
CCP Documentation
Release

OpenStack Foundation

May 13, 2017

Contents

1 User docs 1
1.1 Quick Start . 1
1.2 Monitoring and Logging with StackLight . 4

2 Developer docs 7
2.1 How To Contribute . 7
2.2 CCP Docker images guide . 7
2.3 Application definition contribution guide . 9
2.4 Application definition language . 12

3 Indices and tables 17

i

ii

CHAPTER 1

User docs

Quick Start

This guide provides a step by step instruction of how to deploy CCP on bare metal or a virtual machine.

Recommended Environment

CCP was tested on Ubuntu 16.04 x64. It will probably work on different OSes, but it’s not officialy supported.

CCP was tested on the environment created by Kargo, via fuel-ccp-installer, which manages k8s, calico, docker and
many other things. It will probably work on different setup, but it’s not officialy supported.

Current tested version of different components are:

Component Min Version Max Version Comment
Kubernetes 1.2.4 1.3.5 1.3.0 to 1.3.3 won’t work
Docker 1.10.0 1.12.0
Calico-node 0.20.0 0.21.0

Additionaly, you will need to have working kube-proxy, kube-dns and docker registry.

If you don’t have a running k8s environment, please check out this guide

Warning: All further steps assume that you already have a working k8s installation.

Deploy CCP

Install CCP CLI

Note: Some commands below may require root permissions

To clone the CCP CLI repo:

git clone https://git.openstack.org/openstack/fuel-ccp

To install CCP CLI and Python dependencies use:

pip install fuel-ccp/

1

https://github.com/openstack/fuel-ccp-installer
http://fuel-ccp-installer.readthedocs.io/en/latest/quickstart.html

CCP Documentation, Release

Create CCP CLI configuration file:

mkdir /etc/ccp
cat > /etc/ccp/ccp.yaml << EOF
builder:

push: True
registry:

address: "127.0.0.1:31500"
repositories:

skip_empty: True
EOF

Append default topology and edit it, if needed:

cat fuel-ccp/etc/topology-example.yaml >> /etc/ccp/ccp.yaml

Append global CCP configuration:

cat >> /etc/ccp/ccp.yaml << EOF
configs:

private_interface: eth0
public_interface: eth1
neutron_external_interface: eth2

EOF

Make sure to adjust it to your environment, since the network configuration of your environment may be different.

• private_interface - should point to eth with private ip address.

• public_interface - should point to eth with public ip address (you can use private iface here, if you want
to bind all services to internal network)

• neutron_external_interface - should point to eth without ip addr (it actually might be non-existing
interface, CCP will create it).

Fetch CCP components repos:

ccp fetch

Build CCP components and push them into the Docker Registry:

ccp build

Deploy OpenStack:

ccp deploy

If you want to deploy only specific components use:

ccp deploy -c COMPONENT_NAME1 COMPONENT_NAME2

For example:

ccp deploy -c etcd mariadb keystone

Check deploy status

By default, CCP deploying all components into “ccp” k8s namespace. You could set context for all kubectl commands
to use this namespace:

2 Chapter 1. User docs

http://kubernetes.io/docs/user-guide/namespaces/

CCP Documentation, Release

kubectl config set-context ccp --namespace ccp
kubectl config use-context ccp

Get all running pods:

kubectl get pod -o wide

Get all running jobs:

kubectl get job -o wide

Note: Deployment is successful when all jobs have “1” (Successful) state.

Deploying test OpenStack environment

Install openstack-client:

pip install python-openstackclient

openrc file for current deployment was created in the current working directory. To use it run:

source openrc-ccp

Run test environment deploy script:

bash fuel-ccp/tools/deploy-test-vms.sh -a create -n NUMBER_OF_VMS

This script will create flavor, upload cirrios image to glance, create network and subnet and launch bunch of cirrios
based VMs.

Accessing horizon and nova-vnc

Currently, we don’t have any external proxy (like Ingress), so, for now, we have to use k8s service “nodePort” feature
to be able to access internal services.

Get nodePort of horizon service:

kubectl get service horizon -o yaml | awk '/nodePort: / {print $NF}'

Use external ip of any node in cluster plus this port to access horizon.

Get nodePort of nova-novncproxy service:

kubectl get service nova-novncproxy -o yaml | awk '/nodePort: / {print $NF}'

Take the url from Horizon console and replace “nova-novncproxy” string with an external IP of any node in cluster
plus nodeport from the service.

Cleanup deployment

To cleanup your environment run:

ccp cleanup

This will delete all VMs created by OpenStack and destroy all neutron networks. After it’s done it will delete all k8s
pods in this deployment.

1.1. Quick Start 3

CCP Documentation, Release

Monitoring and Logging with StackLight

This section provides information on deploying StackLight, the monitoring and logging system for CCP.

Warning: StackLight requires Kubernetes 1.4 or higher, and its deployment will fail with Kubernetes 1.3 and
lower. So before deploying StackLight make sure you use an appropriate version of Kubernetes.

Overview

StackLight is composed of several components. Some components are related to logging, and others are related to
monitoring.

The “logging” components:

• heka – for collecting logs

• elasticsearch – for storing/indexing logs

• kibana – for exploring and visualizing logs

The “monitoring” components:

• stacklight-collector – composed of Snap and Hindsight for collecting and processing metrics

• influxdb – for storing metrics as time-series

• grafana – for visualizing time-series

For fetching the StackLight repo (fuel-ccp-stacklight) and building the StackLight Docker images please
refer to the Quick Start section as StackLight is not different from other CCP components for that matter. If you
followed the Quick Start the StackLight images may be built already.

The StackLight Docker images are the following:

• ccp/cron

• ccp/elasticsearch

• ccp/grafana

• ccp/heka

• ccp/hindsight

• ccp/influxdb

• ccp/kibana

Deploy StackLight

The StackLight components are regular CCP components, so the deployment of StackLight is done through the CCP
CLI like any other CCP component. Please read the Quick Start section and make sure the CCP CLI is installed and
you know how to use it.

StackLight may be deployed together with other CCP components, or independently as a separate deployment process.
You may also want to deploy just the “logging” components of StackLight, or just the “monitoring” components. Or
you may want to deploy all the StackLight components at once.

In any case you will need to create StackLight-related roles in your CCP configuration file (e.g.
/etc/ccp/ccp.yaml) and you will need to assign these roles to nodes.

4 Chapter 1. User docs

CCP Documentation, Release

For example:

nodes:
node1:
roles:

- stacklight-backend
- stacklight-collector

node[2-3]:
roles:

- stacklight-collector
roles:

stacklight-backend:
- influxdb
- grafana

stacklight-collector:
- stacklight-collector

In this example we define two roles: stacklight-backend and stacklight-collector. The role
stacklight-backend is assigned to node1, and it defines where influxdb and grafana will run. The
role stacklight-collector is assigned to all the nodes (node1, node2 and node3), and it defines where
stacklight-collector will run. In most cases you will want stacklight-collector to run on every
cluster node, for node-level metrics to be collected for every node.

With this, you can now deploy influxdb, grafana and stacklight-collector with the following CCP
command:

ccp deploy -c influxdb grafana stacklight-collector

Here is another example, in which both the “monitoring” and “logging” components will be deployed:

nodes:
node1:
roles:

- stacklight-backend
- stacklight-collector

node[2-3]:
roles:

- stacklight-collector
roles:

stacklight-backend:
- influxdb
- grafana
- elasticsearch
- kibana

stacklight-collector:
- stacklight-collector
- heka
- cron

And this is the command to use to deploy all the StackLight services:

ccp deploy -c influxdb grafana elasticsearch kibana stacklight-collector heka cron

To check the deployment status you can run:

kubectl --namespace ccp get pod -o wide

and check that all the StackLight-related pods have the RUNNING status.

1.2. Monitoring and Logging with StackLight 5

CCP Documentation, Release

Accessing the Grafana and Kibana interfaces

As already explained in Quick Start CCP does not currently include an external proxy (such as Ingress), so for now
the Kubernetes nodePort feature is used to be albe to access services such as Grafana and Kibana from outside the
Kubernetes cluster.

This is how you can get the node port for Grafana:

$ kubectl get service grafana -o yaml | awk '/nodePort: / {print $NF}'
31124

And for Kibana:

$ kubectl get service kibana -o yaml | awk '/nodePort: / {print $NF}'
31426

6 Chapter 1. User docs

CHAPTER 2

Developer docs

How To Contribute

General info

1. Bugs should be filed on launchpad, not GitHub.

2. Please follow OpenStack Gerrit Workflow to contribute to CCP.

3. Since CCP has multiple Git repositories, make sure to use Depends-On Gerrit flag to create cross repository
dependencies.

Useful documentation

• Please follow our Quick Start guide to deploy your environment and test your changes.

• Please refer to CCP Docker images guide, while making changes to Docker files.

• Please refer to Application definition contribution guide, while making changes to service/* files.

CCP Docker images guide

This guide covers CCP specific requirements for defining Docker images.

Docker files location

All docker files should be located in docker/<component_name> directory, for example:

docker/horizon
docker/keystone

The docker directory may contain multiple components.

Docker directory structure

Each docker directory should contain a Dockerfile.j2 file. Dockerfile.j2 is a file which contains Docker build
instructions in a Jinja2 template format. You can add additional files, which will be used in Dockerfile.j2, but only
Dockerfile.j2 can be a Jinja2 template in this directory.

7

https://bugs.launchpad.net/fuel-ccp
http://docs.openstack.org/infra/manual/developers.html#development-workflow
http://docs.openstack.org/infra/manual/developers.html#cross-repository-dependencies
http://jinja.pocoo.org/docs/dev/

CCP Documentation, Release

Dockerfile format

Please refer to the official Docker documentation which covers the Dockerfile format. CCP has some additional
requirements, which is:

1. Use as few layers as possible. Each command in Dockerfile creates a layer, so make sure you’re grouping
multiple RUN commands into one.

2. If it’s possible, please run container from the non-root user.

3. If you need to copy some scripts into the image, please place them into the /opt/ccp/bin directory.

4. Only one process should be started inside container. Do not use runit, supervisord or any other init systems,
which will allow to spawn multiple processes in container.

5. Do not use CMD and ENTRYPOINT commands in Dockerfile.j2.

6. All OpenStack services should use openstack-base parent image in FROM section. All non-OpenStack
services should use base-tools parent image in FROM section.

Here is an example of valid Dockerfile.j2: Keystone Dockerfile

Supported Jinja2 variables

Only specific variables can actually be used in Dockerfile.j2:

1. namespace - Used in the FROM section, renders into image namespace, by default into ccp.

2. tag - Used in the FROM section, renders into image tag, by default into latest.

3. maintainer - Used in the MAINTAINER section, renders into maintainer email, by default into “MOS
Microservices <mos-microservices@mirantis.com>”

4. copy_sources - Used anywhere in the Dockerfile. please refer to corresponding documentation section
below.

5. Additionaly, you could use variables with software versions, please refer to Application definition contribution
guide for details.

copy_sources

The CCP CLI provides additional feature for Docker images creation, which will help to use git repositories inside
Dockerfile, it’s called copy_sources.

This feature uses configuration from service/files/defaults.yaml from the same repository or from global
config, please refer to Application definition contribution guide for details.

Testing

After making any changes in docker directory, you should test it via build and deploy.

To test building, please run:

ccp build -c <component_name>

For example:

ccp build -c keystone

8 Chapter 2. Developer docs

https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://github.com/openstack/fuel-ccp-keystone/blob/master/docker/keystone/Dockerfile.j2
mailto:mos-microservices@mirantis.com

CCP Documentation, Release

Make sure that image is built without errors.

To test the deployment, please build new images using the steps above and after run:

ccp deploy

Please refer to Quick Start for additional information.

Application definition contribution guide

This guide covers CCP specific DSL, which is used by the CCP CLI to populate k8s objects.

Application definition files location

All application definition files should be located in the service/ directory, as a component_name.yaml file,
for example:

service/keystone.yaml

All templates, such as configs, scripts, etc, which will be used for this service, should be located in
service/<component_name>/files, for example:

service/files/keystone.conf.j2

All files inside this directory are Jinja2 templates. Default variables for these templates should be located in
service/component_name/files/defaults.yaml inside the configs key.

Understanding globals and defaults config

There are three config locations, which the CCP CLI uses:

1. Global defaults - fuel_ccp/resources/defaults.yaml in fuel-ccp repo.

2. Component defaults - service/files/defaults.yaml in each component repo.

3. Global config - Optional. Set path to this config via “–deploy-config /path” CCP CLI arg.

Before deployment, CCP will merge all these files into one dict, using the order above, so “component defaults” will
override “global defaults” and “global config” will override everything.

Global defaults

This is project wide defaults, CCP keeps it inside fuel-ccp repository in
fuel_ccp/resources/defaults.yaml file. This file defines global variables, that is variables that are
not specific to any component, like eth interface names.

Component defaults

Each component repository could contain a service/files/defaults.yaml file with default config for this
component only.

2.3. Application definition contribution guide 9

CCP Documentation, Release

Global config

Optional config with global overrides for all services. Use it only if you need to override some defaults.

Config keys types

Each config could contain 3 keys:

• configs

• versions

• sources

• nodes

Each key has its own purpose and isolation, so you have to add your variable to the right key to make it work.

configs key

Isolation:

• Used in service templates files (service/files/).

• Used in application definition file service/component_name.yaml.

Allowed content:

• Any types of variables allowed.

Example:

configs:
keystone_debug: false

So you could add “{{ keystone_debug }}” variable to you templates, which will be rendered into “false” in this case.

versions key

Isolation:

• Used in Dockerfile.j2 only.

Allowed content:

• Only versions of different software should be kept here.

For example:

versions:
influxdb_version: "0.13.0"

So you could add this to influxdb Dockerfile.j2:

curl https://dl.influxdata.com/influxdb/releases/influxdb_{{ influxdb_version }}_amd64.deb

10 Chapter 2. Developer docs

CCP Documentation, Release

sources key

Isolation:

• Used in Dockerfile.j2 only.

Allowed content:

• This key has a restricted format, examples below.

Remote git repository example:

sources:
openstack/keystone:
git_url: https://github.com/openstack/keystone.git
git_ref: master

Local git repository exaple:

sources:
openstack/keystone:
source_dir: /tmp/keystone

So you could add this to Dockerfile.j2:

{{ copy_sources("openstack/keystone", "/keystone") }}

CCP will use the chosen configuration, to copy git repository into Docker container, so you could use it latter.

network_topology key

Isolation:

• Used in service templates files (service/files/).

Allowed content:

• This key is auto-created by entrypoint script and populated with container network topology, based on the
following variables: private_interface and public_interface.

You could use it to get the private and public eth IP address. For example:

bind = network_topology["private"]["address"]
listen = network_topology["public"]["address"]

nodes and roles key

Isolation:

• Not used in any template file, only used by the CCP CLI to create a cluster topology.

Allowed content:

• This key has a restricted format, example of this format can be found in fuel-ccp git repository in
etc/topology-example.yaml file.

2.3. Application definition contribution guide 11

CCP Documentation, Release

“CCP_*” env variables

Isolation:

• Used in service templates files (service/files/).

Allowed content:

• This variables are created from the application definition env key. Only env keys which start with “CCP_” will
be passed to config hash.

This is mainly used to pass some k8s related information to container, for example, you could use it to pass k8s node
hostname to container via this variable:

Create env key:

env:
- name: CCP_NODE_NAME
valueFrom:

fieldRef:
fieldPath: spec.nodeName

Use this variable in some config:

{{ CCP_NODE_NAME }}

Application definition language

Please refer to Application definition language for detailed description of CCP DSL syntax.

Application definition language

There is a description of current syntax of application definition framework.

Application definition template

service:
name: service-name
ports:

- internal-port:external-port
daemonset: true
host-net: true
containers:

- name: container-name
image: container-image
probes:

readiness: readiness.sh
liveness: liveness.sh

volumes:
- name: volume-name
type: host
path: /path

pre:
- name: service-bootstrap
dependencies:

12 Chapter 2. Developer docs

CCP Documentation, Release

- some-service
- some-other-service

type: single
command: /tmp/bootstrap.sh
files:

- bootstrap.sh
user: user

- name: db-sync
dependencies:

- some-dep
command: some command
user: user

daemon:
dependencies:

- demon-dep
command: daemon.sh
files:

- config.conf
user: user

post:
- name: post-command
dependencies:

- some-service
- some-other-service

type: single
command: post.sh
files:

- config.conf

files:
config.conf:

path: /etc/service/config.conf
content: config.conf.j2
perm: "0600"
user: user

bootstrap.sh:
path: /tmp/bootstrap.sh
content: bootstrap.sh.j2
perm: "0755"

Parameters description

service

2.4. Application definition language 13

CCP Documentation, Release

Name Description Re-
quired

Schema De-
fault

name Name of the service. true string
con-
tain-
ers

List of containers under multi-container pod true container array

ports k8s Service will be created if specified (with NodePort type for now)
Only internal or both internal:external ports can be specified

false internal-port:
external-port
array

dae-
mon-
set

Create DaemonSet instead of Deployment false boolean false

host-
net

false boolean false

container
Name Description Required Schema Default
name Name of the con-

tainer. It will be used
to track status in etcd

true string

image Name of the image.
registry, namespace,
tag will be added by
framework

true string

probes Readiness, liveness or
both checks can be de-
fined. Exec action
will be used for both
checks

false dict with two keys:
liveness:
cmd
readi-
ness:
cmd

volumes false volume array
pre List of commands that

need to be executed
before daemon pro-
cess start

false command array

daemon true command
post The same as for

“pre” except that
post commands will
be executed after
daemon process has
been started

false command array

env An array of environ-
ment variables defined
in kubernetes way.

false env array

volume

14 Chapter 2. Developer docs

http://kubernetes.io/docs/api-reference/v1/definitions/#_v1_envvar

CCP Documentation, Release

Name Description Re-
quired

Schema De-
fault

name Name of the volume true string
type host and empty-dir type supported for now true one of: [”host”,

“empty-dir”]
path Host path that should be mounted (only if type =

“host”)
false string

mount-
path

Mount path in container false string path

readOnly Mount mode of the volume false bool False

command
Name Description Re-

quired
Schema De-

fault
name Name of the command. Required only for pre and post with type single – string
com-
mand

true string

de-
pen-
den-
cies

These keys will be polled from etcd before commands execution false string array

type type: single means that this command should be executed once per
openstack deployment. For commands with type: single Job object will be
created
type: local (or if type is not specified) means that command will be
executed inside the same container as a daemon process.

false one of:
[”single”,
“local”]

lo-
cal

files List of the files that maps to the keys of files dict. It defines which files will
be rendered inside a container

false file keys
array

user false string

files
Name Description Required Schema Default
Name of the file to refer in files list of commands false file array

file
Name Description Re-

quired
SchemaDe-

fault
path Destination path inside a container true string
con-
tent

Name of the file under {{ service_repo }}/service/files directory. This file will be
rendered inside a container and moved to the destination defined with path

true string

perm false string
user false string

2.4. Application definition language 15

CCP Documentation, Release

16 Chapter 2. Developer docs

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

17

	User docs
	Quick Start
	Monitoring and Logging with StackLight

	Developer docs
	How To Contribute
	CCP Docker images guide
	Application definition contribution guide
	Application definition language

	Indices and tables

