

Welcome to Fuel-ccp’s documentation!

User docs

	Quick Start

	Monitoring and Logging with StackLight

	Configuration files

	Configuration key types

	Resource Bootstrapping

	Ingress

Advanced topics

	Deploying Mutliple Parallel Environments

	Mysql Galera Guide

	Ceph and Swift guide

	Ceph cluster deployment

	SR-IOV guide

	Enable Distributed Virtual Routing in Neutron

	Using Calico instead of Open vSwitch

	Using OpenDaylight instead of Open vSwitch

	Ironic guide

	ZeroMQ Guide

	Services Known Issues

	Neutron Configuration

Service plugins docs

	Searchlight CCP plugin documentation

	Designate CCP plugin documentation

Developer docs

	How To Contribute

	Application definition contribution guide

	CCP Docker images guide

	Application definition language

	Debugging microservice/application

	Diagnostic snapshot

Design docs

	Clusters On Kubernetes

	OpenStack Compute node / VMs on K8s

	OpenStack Reference Architecture For 100, 300 and 500 Nodes

	OpenStack Reference Architecture For 1000 Nodes

	Kubernetes Master Tier For 1000 Nodes Scale

Indices and tables

	Index

	Module Index

	Search Page

Quick Start

This guide provides a step by step instruction of how to deploy CCP on bare
metal or a virtual machine.

Recommended Environment

CCP was tested on Ubuntu 16.04 x64. It will probably work on different OSes,
but it’s not officialy supported.

CCP was tested on the environment created by Kargo, via
fuel-ccp-installer [https://github.com/openstack/fuel-ccp-installer],
which manages k8s, calico, docker and many other things. It will probably work
on different setup, but it’s not officialy supported.

Current tested version of different components are:

	Component
	Min Version
	Max Version
	Comment

	Kubernetes
	1.5.1
	1.5.x
	

	Docker
	1.10.0
	1.13.x
	

	Calico-node
	0.20.0
	1.0.x
	

Additionaly, you will need to have working kube-proxy, kube-dns and docker
registry.

If you don’t have a running k8s environment, please check out this guide [http://fuel-ccp-installer.readthedocs.io/en/latest/quickstart.html]

Warning

All further steps assume that you already have a working k8s
installation.

Deploy CCP

Install CCP CLI

Note

Some commands below may require root permissions and require
a few packages to be installed by the provisioning underlay:

	python-pip

	python-dev

	python3-dev

	python-netaddr

	software-properties-common

	python-setuptools

	gcc

If you’re deploying CCP from non-root user, make sure your user are in the
docker group. Check if user is added to docker group

id -Gn | grep docker

If not added you can add your user to docker group via:

sudo usermod -a -G docker your_user_name

To clone the CCP CLI repo:

git clone https://git.openstack.org/openstack/fuel-ccp

To install CCP CLI and Python dependencies use:

sudo pip install fuel-ccp/

Create a local registry service (optional):

bash fuel-ccp/tools/registry/deploy-registry.sh

When you deploy a local registry using that script, the registry
address is 127.0.0.1:31500.

Create CCP CLI configuration file:

cat > ~/.ccp.yaml << EOF
builder:
 push: True
registry:
 address: "127.0.0.1:31500"
repositories:
 skip_empty: True
EOF

If you’re using some other registry, please use its address instead.

Append default topology and edit it, if needed:

cat fuel-ccp/etc/topology-example.yaml >> ~/.ccp.yaml

For example, you may want to install Stacklight to collect Openstack logs.
See Monitoring and Logging with StackLight for the deployment of monitoring and
logging services.

Append global CCP configuration:

cat >> ~/.ccp.yaml << EOF
configs:
 private_interface: eth0
 public_interface: eth1
 neutron:
 physnets:
 - name: "physnet1"
 bridge_name: "br-ex"
 interface: "ens8"
 flat: true
 vlan_range: "1001:1030"
 dpdk: false
EOF

Make sure to adjust it to your environment, since the network configuration of
your environment may be different.

	private_interface - should point to eth with private ip address.

	public_interface - should point to eth with public ip address (you can
use private iface here, if you want to bind all services to internal
network)

	neutron.physnets - should contain description of Neutron physical
networks. If only internal networking with VXLAN segmentation required,
this option can be empty.
name is name of physnet in Neutron.
bridge_name is name of OVS bridge.
interface should point to eth without ip addr.
flat allow to use this network as flat, without segmentation.
vlan_range is range of allowed VLANs, should be false if VLAN
segmenantion is not allowed.
dpdk if enabled for particular network, OVS will handle it via userspace
DPDK [https://docs.openstack.org/developer/neutron/devref/ovs_vhostuser.html]

For the additional info about bootstrapping configuration please read the
Resource Bootstrapping.

Append replicas configuration:

cat >> ~/.ccp.yaml << EOF
replicas:
 database: 3
 rpc: 3
 notifications: 1
EOF

This will sets the number of replicas to create for each service. We need 3
replicas for galera and rabbitmq cluster.

Fetch CCP components repos:

ccp fetch

Build CCP components and push them into the Docker Registry:

ccp build

Deploy OpenStack:

ccp deploy

If you want to deploy only specific components use:

ccp deploy -c COMPONENT_NAME1 COMPONENT_NAME2

For example:

ccp deploy -c etcd galera keystone memcached

Check deploy status

By default, CCP deploying all components into “ccp” k8s
namespace [http://kubernetes.io/docs/user-guide/namespaces/].
You could set context for all kubectl commands to use this namespace:

kubectl config set-context ccp --namespace ccp
kubectl config use-context ccp

Get all running pods:

kubectl get pod -o wide

Get all running jobs:

kubectl get job -o wide

Note

Deployment is successful when all jobs have “1” (Successful) state.

Deploying test OpenStack environment

Install openstack-client:

pip install python-openstackclient

openrc file for current deployment was created in the current working
directory.
To use it run:

source openrc-ccp

Run test environment deploy script:

bash fuel-ccp/tools/deploy-test-vms.sh -a create -n NUMBER_OF_VMS

This script will create flavor, upload cirrios image to glance, create network
and subnet and launch bunch of cirrios based VMs.

Accessing horizon and nova-vnc

Currently, we don’t have any external proxy (like Ingress), so, for now, we
have to use k8s service “nodePort” feature to be able to access internal
services.

Get nodePort of horizon service:

kubectl get service horizon -o yaml | awk '/nodePort: / {print $NF}'

Use external ip of any node in cluster plus this port to access horizon.

Get nodePort of nova-novncproxy service:

kubectl get service nova-novncproxy -o yaml | awk '/nodePort: / {print $NF}'

Take the url from Horizon console and replace “nova-novncproxy” string with an
external IP of any node in cluster plus nodeport from the service.

Cleanup deployment

To cleanup your environment run:

ccp cleanup

This will delete all VMs created by OpenStack and destroy all neutron networks.
After it’s done it will delete all k8s pods in this deployment.

Monitoring and Logging with StackLight

This section provides information on deploying StackLight, the monitoring and
logging system for CCP.

Warning

StackLight requires Kubernetes 1.4 or higher, and its deployment
will fail with Kubernetes 1.3 and lower. So before deploying StackLight make
sure you use an appropriate version of Kubernetes.

Overview

StackLight is composed of several components. Some components are related to
logging, and others are related to monitoring.

The “logging” components:

	heka – for collecting logs

	elasticsearch – for storing/indexing logs

	kibana – for exploring and visualizing logs

The “monitoring” components:

	stacklight-collector – composed of Snap and Hindsight for collecting and
processing metrics

	influxdb – for storing metrics as time-series

	grafana – for visualizing time-series

For fetching the StackLight repo (fuel-ccp-stacklight) and building the
StackLight Docker images please refer to the Quick Start section as
StackLight is not different from other CCP

 Configuration files

Configuration files

This section will describe configuration format used in CCP.

Understanding global and default configs

There are three config locations, which the CCP CLI uses:

	Global defaults - fuel_ccp/resources/defaults.yaml in fuel-ccp repo.

	Component defaults - service/files/defaults.yaml in each component repo.

	Global config - Optional. For more information read the
Global config.

Before deployment, CCP will merge all these files into one dict, using the
order above, so “component defaults” will override “global defaults” and
“global config” will override everything.

For example, one of common situations is to specify custom options for
networking. To achieve user may overwrite options defined in
Global defaults and Component defaults by setting new values in
Global config.

File fuel_ccp/resources/defaults.yaml has follow settings:

configs:
 private_interface: eth0
 public_interface: eth1
 ...

And part of the fuel-ccp-neutron/service/files/defaults.yaml looks like:

configs:
 neutron:
 ...
 bootstrap:
 internal:
 net_name: int-net
 subnet_name: int-subnet
 network: 10.0.1.0/24
 gateway: 10.0.1.1
 ...

User may overwrite these sections by defining the following content in the
~/.ccp.yaml:

debug: true
configs:
 private_interface: ens10
 neutron:
 bootstrap:
 internal:
 network: 22.0.1.0/24
 gateway: 22.0.1.1

To validate these changes user needs to execute command ccp config dump.
It will return final config file with changes, which user did. So output should
contain the following changes:

debug: true
...
configs:
 private_interface: ens10 <----- it was changed
 public_interface: eth1 <----- it wasn't changed
 neutron:
 bootstrap:
 internal:
 net_name: int-net <--- it wasn't changed
 subnet_name: int-subnet <--- it wasn't changed
 network: 22.0.1.0/24 <----- it was changed
 gateway: 22.0.1.1 <----- it was changed

Global defaults

This is project wide defaults, CCP keeps it inside fuel-ccp repository in
fuel_ccp/resources/defaults.yaml file. This file defines global variables,
that is variables that are not specific to any component, like interface names.

Component defaults

Each component repository could contain a service/files/defaults.yaml file
with default config for this component only.

Global config

See description in Global config.

 Configuration key types

Configuration key types

Overview

Each config could contain several keys. Each key has its own purpose and
isolation, so you have to add your variable to the right key to make it work.
For optimization description all keys will be splitted on several groups based
on purpose.

CCP specific

Current list contains keys for configuration logging in the CCP CLI.

	debug

	default_log_levels

	log_file

	verbose_level

Build options

The biggest group of keys configures build process, i.e. how to build,
which sources and images to use.

	builder

	versions

	repositories

	sources

	url

	images

Deployment Configuration

This group is dedicated to describe topology of deployment, configuration
of the microservices and credentials for connecting to Kubernetes cluster.

	configs

	secret_configs

	files

	kubernetes

	services

	nodes

	roles

	replicas

Other specific variables

The last group includes keys, which should be described, but could not be
a part of groups mentioned erlier.

	registry

	action

	network_topology

	node_name

	pod_name

	address

List of keys

debug

Isolation:

	Not used in any template file, only used by the CCP CLI.

Allowed content:

	Boolean value (default: False).

Option enable debug messages and tracebacks during ccp commands execution

default_log_levels

Isolation:

	Not used in any template file, only used by the CCP CLI.

Allowed content:

	Array of string values.
Default value:

[
 'glanceclient=INFO',
 'keystoneauth=INFO',
 'neutronclient=INFO',
 'novaclient=INFO',
 'requests=WARN',
 'stevedore=INFO',
 'urllib3=WARN'
]

This array describes log levels for different components used by the CCP.
Messages from these componenets will be written to ccp debug logs.

log_file

Isolation:

	Not used in any template file, only used by the CCP CLI.

Allowed content:

	String value (default: None).

Full path with file name for storing ccp execution logs. If only file name
is specified, then CCP will try to find this file in the current directory.

verbose_level

Isolation:

	Not used in any template file, only used by the CCP CLI.

Allowed content:

	Integer value. (default: 1)

This option allows to specify verbose level for ccp debug logging.

builder

Isolation:

	Not used in any template file, only used by the CCP CLI for building images.

Allowed content:

	This key has the following list of sub-keys:

	Name
	Description
	Schema
	Default

	workers
	Number of the workers, which will be used during building component
images.
	integer
	number of CPU in the system

	keep_image_tree_consistency
	Rebuld dependent images, if base image was rebuilt.
	boolean
	True

	build_base_images_if_not_exist
	Forces base image building.
	boolean
	True

	push
	Push images to docker registry.
	boolean
	False

	no_cache
	Do not use docker caching during building images.
	boolean
	False

versions

Isolation:

	Used in Dockerfile.j2.

	Used in Global Config file.

Allowed content:

	Only versions of different software should be kept here.

For example:

versions:
 influxdb_version: "0.13.0"

So you could add this to influxdb Dockerfile.j2:

curl https://dl.influxdata.com/influxdb/releases/influxdb_{{ influxdb_version }}_amd64.deb

repositories

Isolation:

	Not used in any template file, only used by the CCP CLI to fetch service
repositories, e.g. fuel-ccp-* (nova, cinder and etc).

Detailed explanation can be found in repositories section.

sources

Isolation:

	Used in Dockerfile.j2.

	Used in Global Config file.

Allowed content:

	This key has a restricted format, examples below.

Remote git repository example:

sources:
 openstack/keystone:
 git_url: https://github.com/openstack/keystone.git
 git_ref: master

Local git repository example:

sources:
 openstack/keystone:
 source_dir: /tmp/keystone

So you could add this to Dockerfile.j2:

{{ copy_sources("openstack/keystone", "/keystone") }}

CCP will use the chosen configuration, to copy git repository into Docker
container, so you could use it later.

url

Isolation:

	Used in Dockerfile.j2.

	Used in Global Config file.

Allowed content:

	Only repos for artifacts (e.g. Deb, Pypi repos). Can be specific for
different components.

Data which will be used by ccp during docker image building.
For example for mariadb:

url:
 mariadb:
 debian:
 repo: "http://lon1.mirrors.digitalocean.com/mariadb/repo/10.1/debian"
 keyserver: "hkp://keyserver.ubuntu.com:80"
 keyid: "0xcbcb082a1bb943db"

images

Isolation:

	Not used in any template file, only used by the CCP CLI to build base images.

Allowed content:

	This key has the following list of sub-keys:

	Name
	Description
	Schema
	Default

	namespace
	Namespace which should be used for ccp related images.
	string
	ccp

	tag
	Tag for ccp related images.
	string
	latest

	base_distro
	Base image for building ccp images.
	string
	debian

	base_tag
	Tag of the base image for bulding ccp images.
	string
	jessie

	base_images
	Names of base images.
	array of strings
	[‘base’]

	maintainer
	Maintainer of ccp images.
	string
	MOS Microservices <mos-microservices@mirantis.com>

	image_specs
	Extra keys for building images.
	json
	–

configs

Isolation:

	Used in service templates files (service/files/).

	Used in application definition file service/component_name.yaml.

	Used in Global Config file.

Allowed content:

	Any types of variables are allowed.

Example:

configs:
 keystone_debug: false

So you could add “{{ keystone_debug }}” variable to you templates, which will
be rendered into “false” in this case.

secret_configs

Same as configs, but will be stored inside of k8s Secret instead of
ConfigMap.

files

	Used in Global Config file.

Note

This section is used in component repositories for configuration
files references. In case Global Config usage is tricky for you,
custom config files for a particular service can be set
in ~/.ccp.yaml.

Warning

This section has the different format from same section used in
component defitinions (i.e. in fuel-ccp-* repositories).

Allowed content:

	Strict format mentioned below:

files:
 file_name: /path

kubernetes

Isolation:

	Not used in any template file, only used by the CCP CLI to operate with
Kubernetes cluster.

Allowed content:

	This key has the following list of sub-keys:

	Name
	Description
	Schema
	Default

	server
	URL for accessing of Kubernetes API.
	string
	http://localhost:8080

	namespace
	Namespace which will be created and used for deploying Openstack.
	string
	ccp

	ca_cert
	Path of CA TLS certificate(s) used to verify the Kubernetes server’s
certificate.
	string
	–

	key_file
	Path of client key to use in SSL connection.
	string
	–

	cert_file
	Path of certificate file to use in SSL connection.
	string
	–

	insecure
	Explicitly allow ccp to perform “insecure SSL” (https) requests.
	boolean
	False

	cluster_domain
	Name of the cluster domain.
	string
	cluster.local

replicas

Isolation:

	Not used in any template file, only used by the CCP CLI to create a cluster
topology.

Allowed content:

	JSON object where keys are service names with value equal number of
replicas which should be run after deploy.

Note

For services defined with kind: DaemonSet replicas number can’t be
specified and will be always equal to number of nodes this service
assigned to.

For example:

replicas:
 heat-engine: 3

services

Isolation:

	Not used in any template file, only used by the CCP CLI to create new
services and connect them between each other.

Allowed content:

	This is a dict that contains definitions for dedicated services.
Its keys are service names, values are dicts with the following keys:

	Name
	Description
	Schema
	Default

	service_def
	Name of the service definition associated with that service.
	string
	–

	mapping
	Dict to map service abstractions to defined services.
	dict
	–

	configs
	Config overrides for this particular service.
	dict
	–

You can find more information and examples in “services” section page.

nodes

Isolation:

	Not used in any template file, only used by the CCP CLI to create a cluster
topology.

Allowed content:

	This key contains a regular expression to match one or several nodes at once,
example can be found in fuel-ccp git repository in
etc/topology-example.yaml file. If your environment contains more than 9
nodes, you must explicitly specify the “end-of-line”, because expression like
node([1-5]|10|11) will also match node12, node13 etc. Example can be found in
fuel-ccp git repository in
etc/topology-with-large-number-of-nodes.yaml file. This key includes
next two sub-keys:

	roles sub-key, which contains a list of roles names. Example of such
definition can be found in topology example file [https://github.com/openstack/fuel-ccp/blob/master/etc/topology-example.yaml].

	configs key, which defines dict of configs, specific for particular node
and service. Configs serve to override global config defaults, for example,
for variables, dependent on node hardware configuration. Example:

nodes:
 node[2-3]:
 roles:
 - openstack
 configs:
 nova:
 logging_debug: true

Note

It’s very important: global configs merged with specific nodes

configs in lexicographic order, i.e. if you have override key test with
value 2 for node[1-3] and with value 4 node[2-4], then node2 will
have key-value pair (test, 4) in configs.

roles

Isolation:

	Not used in any template file, only used by the CCP CLI to create a cluster
topology.

Allowed content:

	The roles specified in the ‘roles’ key for node will apply to all matched
nodes. If a node matches several ‘nodes’ keys, each with different roles,
then roles from all keys will be added to node. Example can be found in the
topology example file [https://github.com/openstack/fuel-ccp/blob/master/etc/topology-example.yaml].

registry

Isolation:

	Not used in any template file, only used by the CCP CLI to configure
docker registry, which will be used for deployment.

Allowed content:

	This key has the following list of sub-keys:

	Name
	Description
	Schema
	Default

	address
	Address of registry service.
	string
	–

	insecure
	Use insecure connection or not.
	boolean
	False

	username
	Username to access docker registry.
	string
	–

	password
	Password to access docker registry.
	string
	–

	timeout
	Value, which specifies how long the CCP waits response from registry.
	integer
	300

This is used to pass information for accessing docker registry.
Example can be found in quickstart.

action

Warning

This option was deprecated in favor of CLI parameters, so please
don’t use it, because it will be removed in future.

network_topology

Isolation:

	Used in service templates files (service/files/).

Allowed content:

	This key is auto-created by entrypoint script and populated with container
network topology, based on the following variables: private_interface and
public_interface.

You could use it to get the private and public eth IP address. For example:

bind = "{{ network_topology["private"]["address"] }}"
listen = "{{ network_topology["public"]["address"] }}"

node_name

Isolation:

	Used in service templates files (service/files/).

Allowed content:

	This key is auto-created by entrypoint script based on kubernetes downward
api.

You could use it to get the name of the node on which container is deployed.
For example:

my_node = "{{ node_name }}"

pod_name

Isolation:

	Used in service templates files (service/files/).

Allowed content:

	This key is auto-created by entrypoint script based on kubernetes downward
api.

You could use it to get the name of the pod on which container is deployed.
For example:

my_pod = "{{ pod_name }}"

address

Isolation:

	Used in service templates files (service/files/).

	Used in application definition file service/component_name.yaml.

Allowed content:

	This is a function with the following params:

	Parameter
	Description
	Required
	Default

	service
	Name of the service.
	True
	–

	port
	Add port to the url. Port config section should be specified.
	False
	–

	external
	Use external url instead of internal.
	False
	False

	with_scheme
	Add scheme to the url.
	False
	False

You could use it to get address of the service. For example:

service_address = "{{ address('keystone', keystone.public_port, external=True, with_scheme=True) }}"

 Resource Bootstrapping

Resource Bootstrapping

Current section describes what and how can be bootstrapped in the CCP.
There are several services, which have bootstrapping. It’s:

	Network bootstrapping

	images

	Flavor bootstrapping

Network bootstrapping

This section allows to configure internal and external networking in neutron.
Snippet below demonstrates all available options:

configs:
 neutron:
 bootstrap:
 internal:
 enable: true
 net_name: int-net
 subnet_name: int-subnet
 network: 10.0.1.0/24
 gateway: 10.0.1.1
 external:
 enable: false
 net_name: ext-net
 subnet_name: ext-subnet
 physnet: changeme
 network: changeme
 gateway: changeme
 nameserver: changeme
 pool:
 start: changeme
 end: changeme
 router:
 name: ext-router

First part configures internal network. All options have default values:

Internal network configuration options

	Name
	Description
	Default

	enable
	boolean flag, which turns on/off bootstrap.
	true

	net_name
	Name of the internal network, which will be created in neutron.
	int-net

	subnet_name
	Name of the subnet in internal network, which will be created in
neutron.
	int-subnet

	network
	CIDR of the internal network for allocating internal IP addresses.
	10.0.1.0/24

	gateway
	Gateway for subnet in the internal network.
	10.0.1.1

Second part describes external network configuration. Bootstrapping for
external network is disabled by default and user should specify all options
after turning it on, because most of them don’t have default values.

External network configuration options

	Name
	Description
	Default

	enable
	boolean flag, which turns on/off bootstrap.
	false

	net_name
	Name of the external network, which will be created in neutron. Default
value can be used.
	ext-net

	subnet_name
	Name of the subnet in external network, which will be created in
neutron. Default value can be used.
	ext-subnet

	physnet
	Name of the physnet, which was defined in physnets section.
	–

	network
	CIDR of the external network for allocating external IP addresses.
	–

	gateway
	Gateway for subnet in the external network.
	–

	nameserver
	DNS server for subnet in external network.
	–

	pool
	Pool of the addresses from external network, which can be used for
association with Openstack VMs. Should be specified by using nested
keys: start and end, which requires corresponding IP addresses.
	–

The last section is a router configuration. It allows to specify name of the
router, which will be created in neutron. Both networks will be connected with
this router by default (except situation, when bootstrapping only for internal
network is enabled).
If bootstrapping is enabled at least for one network, router will be
automatically created. In case, when user does not want to change default
router name (ext-router) this section can be skipped in config.

Creation of the networks is handled by neutron post deployment jobs
neutron-bootstrap-*, which call openstackclient with specified parameters.

Example

As a simple example let’s use snippet below:

configs:
 neutron:
 physnets:
 - name: ext-physnet
 bridge_name: br-ex
 interface: ens5
 flat: true
 vlan_range: false
 bootstrap:
 # external network parameters
 external:
 enable: true
 physnet: ext-physnet
 network: 10.90.2.0/24
 gateway: 10.90.2.1
 nameserver: 8.8.8.8
 pool:
 start: 10.90.2.10
 end: 10.90.2.250

Now go through all options and comments, what and why was choosen.
First of all need to note, that interface ens5 and bridge br-ex
are used for creation physnet. Then in bootstrap section name of created
physnet is used for providing references for external network.
Google public DNS server (8.8.8.8) is used as a nameserver.
The main tricky thing here is an IP range and a gateway. In the current example
Host for Kubernetes cluster has interface with IP address equal to specified IP
in the gateway field. It’s usually necessary for providing access from
Openstack VMs to service APIs.
At the end don’t forget to be careful with pool of available external
addresses. It should not contain IPs outside of cluster.

Image bootstrapping

Bootstrap for image allows to create/upload one image after deploying glance
services. To enable it, user needs to add lines mentioned below to ~/.ccp.yaml:

configs:
 glance:
 bootstrap:
 enable: true
 image:
 url: http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img
 disk_format: qcow2
 name: cirros

This snippet adds bootstrap section for glance service and enables it.
Note, that by default enable option is False. So if user wants to use
bootstrapping he should explicitly set it to True.

The last part of the snippet describes image specific options.
All options should be specified, otherwise it will cause an error during job
execution:

Glance image bootstrapping default configuration options

	Name
	Description
	Default

	url
	url, which will be used for downloading image.
	http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img

	disk_format
	format of the image which will be used during image creation in the
glance.
	qcow2

	name
	name of the image, which will be created in the glance.
	cirros

Creation of the image is handled by glance post deployment job
glance-cirros-image-upload, which uses Bash script from fuel-ccp-glance
repository: service/files/glance-cirros-image-upload.sh.j2.

Flavor bootstrapping

The CCP automatically creates list of the default flavors, which are mentioned
in the table below:

	Name
	ID
	RAM
	Disk
	VCPUs

	m1.test
	0
	128
	1
	1

	m1.tiny
	1
	512
	1
	1

	m1.small
	2
	2048
	20
	1

	m1.medium
	3
	4096
	40
	2

	m1.large
	4
	8192
	80
	4

	m1.xlarge
	5
	16384
	160
	8

The corresponding section in the config file looks like:

configs:
 nova:
 bootstrap:
 enable: true
 flavors:
 - name: m1.test
 id: 0
 ram: 128
 disk: 1
 vcpus: 1
 - name: m1.tiny
 id: 1
 ram: 512
 disk: 1
 vcpus: 1
 - name: m1.small
 id: 2
 ram: 2048
 disk: 20
 vcpus: 1
 - name: m1.medium
 id: 3
 ram: 4096
 disk: 40
 vcpus: 2
 - name: m1.large
 id: 4
 ram: 8192
 disk: 80
 vcpus: 4
 - name: m1.xlarge
 id: 5
 ram: 16384
 disk: 160
 vcpus: 8

Creation of the flavors is handled by nova post deployment job
nova-bootstrap-flavors, which uses Bash script from fuel-ccp-nova
repository: service/files/create-flavors.sh.j2.

User also can specify to bootstrap custom flavors. Similar to previous
sections it can be done by adding the following snippet to ~/.ccp.yaml:

configs:
 nova:
 bootstrap:
 enable: true
 flavors:
 - name: custom_name1
 id: 42
 ram: 1024
 disk: 1
 vcpus: 1
 - name: custom_name2
 id: 43
 ram: 2024
 disk: 2
 vcpus: 2

Warning

New list of custom flavors will overwrite default flavors and
they will not be created. To avoid it, just copy paste definition
of default flavors to your config and then extend it by new custom
flavors.

This snippet adds bootstrap section for nova service. Note, that by default
enable option is True. So if user doesn’t want to use bootstrapping he
should explicitly set it to False.

The last part of the snippet describes list of flavors with related options.
All options should be specified, otherwise it will cause an error during job
execution:

Nova flavor bootstrapping configuration options

	Name
	Description
	Default

	name
	Name of the custom flavor.
	–

	id
	Indentifier of the flavor.
	–

	ram
	Vaqlue of the RAM memory for the current flavor.
	–

	disk
	Disk size for the curretn flavor.
	–

	vcpus
	Number of the vcpus for the current flavor.
	–

 Ingress

Ingress

One of the ways to make services in Kubernetes externally-reachable is to use
Ingress. This page describes how it can be enabled and used in CCP.

Ingress controller

In order to make Ingress work, the cluster should have an Ingress controller.
You can use any implementation of it, the only requirement is that it should
be configured to use TLS.

There is a script deploy-ingress-controller.sh in
fuel-ccp/tools/ingress directory for testing purposes that can do it
for you. It will deploy traefik ingress controller and expose it as a k8s
service. The only required parameter is one of the k8s nodes IP which need to
be specified with -i. Ingress controller will be configured to use TLS. If
certificate and key were not provided with script parameters, the will be
generated automatically.

Enable Ingress in CCP

The following parameters are responsible for Ingress configuration:

configs:
 ingress:
 enabled: False
 domain: external
 port: 8443

Ingress is disabled by default. To enable it, enabled config option should
be set to True. Optionally domain and port can be changed.

Note

There’s no option to run Ingress without TLS.

Note

port parameter should match HTTPS port of Ingress controller.

Note

For multiple OpenStack deployments highly recommended to use
different `domain`s or run multiple Ingress controllers with
configured namespace isolation.

To get all Ingress domains of the current deployment you can run
ccp domains list command:

+------------------------------+
| Ingress Domain |
+------------------------------+
| application-catalog.external |
| identity.external |
| orchestration.external |
| image.external |
| object-store.external |
| network.external |
| ironic.external |
| volume.external |
| console.external |
| data-processing.external |
| horizon.external |
| compute.external |
| search.external |
+------------------------------+

All of them should be resolved to the exposed IP of the Ingress controller.
It could be done with DNS or /etc/hosts.

The following command will prepare /etc/hosts for you. Only IP of the Ingress
controller (and configuration file if needed) should be specified:

echo INGRESS_CONTROLLER_IP $(ccp domains list -q -f value) | sudo tee -a /etc/hosts

Expose a service with Ingress

To expose one of the ports of a service with Ingress, ingress parameter with
subdomain should be specified in the config section associated with that port:

configs:
 public_port:
 cont: 5000
 ingress: identity

During the ccp deploy command execution Ingress objects will be
created and all address occurrences with enabled external flag will be
substituted with proper Ingress domains.

 Deploying Mutliple Parallel Environments

Deploying Mutliple Parallel Environments

This guide describes how to deploy and run in parallel more than one
OpenStack environment on a single Kubernetes cluster.

Warning

This functionality may not work correctly until this Calico bug is
fixed: https://github.com/projectcalico/libcalico/issues/148

Introduction

From the Kubernetes (K8s) perspective, CCP is just another application,
therefore it should be possible to run multiple CCP deployments within
a single K8s cluster.
This also promotes flexibility as there is no need to deploy separate
K8s clusters to run parallel but isolated OpenStack clouds.
A sample use-case may include 3 clouds: development, staging and production -
all run on a single K8s cluster and managed from one place.

How deployments are isolated:

	logically by K8s namespaces (including individual FQDNs for each CCP service
in each namespace)

	on a Docker level for services that can share hosts (e.g. keystone)

	on a host level for services that can be run 1 per host only (e.g.
nova-libvirt)

Warning

Network isolation for parallel deployments depends on networking
solution deployed in the K8s cluster. E.g. in case of Calico it offers
tenant isolation but it may not be yet available for particular K8s
deployment methods (e.g. Kargo).
Please be aware that if that is the case, pods in different CCP deployments
can access networks of each other.

What is needed to deploy mutliple CCPs in parallel:

	runnning K8s environment (for a tested, recommended setup please check out
this guide [http://fuel-ccp.readthedocs.io/en/latest/quickstart.html])

	CCP installed on a machine with access to kube-apiserver (e.g. K8s
master node)

	CCP CLI config file for each deployment

	CCP topology YAML file for each deployment

Quick start

To quickly deploy 2 parallel OpenStack environments, run these commands
on your K8s master node:

git clone https://git.openstack.org/openstack/fuel-ccp
cd fuel-ccp
tox -e multi-deploy -- --number-of-envs 2

Sample deployment model

Following is an example of 3 parallel CCP deployments. Here is breakdown
of services assignment to nodes (please note this isn’t yet CCP topology file):

node1:
 - openvswitch[1]
 - controller-net-host[1]
 - controller-net-bridge[.*]
node[2-3]
 - openvswitch[1]
 - compute[1]
 - controller-net-bridge[.*]
node4:
 - openvswitch[2]
 - controller-net-host[2]
 - controller-net-bridge[.*]
node[5-6]
 - openvswitch[2]
 - compute[2]
 - controller-net-bridge[.*]
node7:
 - openvswitch[3]
 - controller-net-host[3]
 - controller-net-bridge[.*]
node[8-9]
 - openvswitch[3]
 - compute[3]
 - controller-net-bridge[.*]

Deployments 1-3 are marked by numbers in brackets ([]).
For each deployment we dedicate:

	1 node for net-host Controller services + Open vSwitch (e.g. node1 in
deployment #1, node4 in deployment #2, node7 in deployment #3)

	2 nodes for Computes + Open vSwich (e.g. node2 and node3 in deployment #1,
node5 and node6 in deployment #2, etc.)

Sample CCP configuration

Let’s now write the deployment model described in previous section into
specific CCP configuration files. For each of 3 deployments we need 2 separate
config files (1 for CLI configuration and 1 with topology) + 2 shared config
files for common configuration options and roles definitions.

cat > ccp-cli-config-1.yaml << EOF
!include
- ccp-configs-common.yaml
- ccp-roles.yaml
- ccp-topology-1.yaml

kubernetes:
 namespace: "ccp-1"
EOF

cat > ccp-cli-config-2.yaml << EOF
!include
- ccp-configs-common.yaml
- ccp-roles.yaml
- ccp-topology-2.yaml

kubernetes:
 namespace: "ccp-2"
EOF

cat > ccp-cli-config-3.yaml << EOF
!include
- ccp-configs-common.yaml
- ccp-roles.yaml
- ccp-topology-3.yaml

kubernetes:
 namespace: "ccp-3"
EOF

cat > ccp-configs-common.yaml << EOF

builder:
 push: True
registry:
 address: "127.0.0.1:31500"
repositories:
 path: /tmp/ccp-repos
 skip_empty: True
configs:
 private_interface: eth0
 public_interface: eth1
 neutron_external_interface: eth2
EOF

cat > ccp-roles.yaml << EOF

roles:
 controller-net-host:
 - neutron-dhcp-agent
 - neutron-l3-agent
 - neutron-metadata-agent
 controller-net-bridge:
 - etcd
 - glance-api
 - glance-registry
 - heat-api-cfn
 - heat-api
 - heat-engine
 - horizon
 - keystone
 - mariadb
 - memcached
 - neutron-server
 - nova-api
 - nova-conductor
 - nova-consoleauth
 - nova-novncproxy
 - nova-scheduler
 - rabbitmq
 compute:
 - nova-compute
 - nova-libvirt
 openvswitch:
 - neutron-openvswitch-agent
 - openvswitch-db
 - openvswitch-vswitchdvv
EOF

cat > ccp-topology-1.yaml << EOF

nodes:
 node[1,2-3,4,5-6,7,8-9]:
 roles:
 - controller-net-bridge
 node1:
 roles:
 - openvswitch
 - controller-net-host
 node[2-3]:
 roles:
 - openvswitch
 - compute
EOF

cat > ccp-topology-2.yaml << EOF

nodes:
 node[1,2-3,4,5-6,7,8-9]:
 roles:
 - controller-net-bridge
 node4:
 roles:
 - openvswitch
 - controller-net-host
 node[5-6]:
 roles:
 - openvswitch
 - compute
EOF

cat > ccp-topology-3.yaml << EOF

nodes:
 node[1,2-3,4,5-6,7,8-9]:
 roles:
 - controller-net-bridge
 node7:
 roles:
 - openvswitch
 - controller-net-host
 node[8-9]:
 roles:
 - openvswitch
 - compute
EOF

Since we will use the same Docker OpenStack images for all 3 deployments it is
sufficient to build them (and push to local registry) only once:

ccp --config-file ccp-cli-config-1.yaml build

We can now deploy CCP as usually:

ccp --config-file ccp-cli-config-1.yaml deploy
ccp --config-file ccp-cli-config-2.yaml deploy
ccp --config-file ccp-cli-config-3.yaml deploy

CCP will create 3 K8s namespaces (ccp-1, ccp-2 and ccp-3) and corresponding
jobs, pods and services in each namespace. Finally, it will create openrc files
in current working directory for each deployment, named openrc-ccp-1,
openrc-ccp-2 and openrc-ccp-3. These files (or nodePort of horizon
K8s service in each namespace) can be used to access each OpenStack cloud
separately. To know when each deployment is ready to be accessed
kubectl get jobs command can be used (all jobs should finish):

kubectl --namespace ccp-1 get jobs
kubectl --namespace ccp-2 get jobs
kubectl --namespace ccp-3 get jobs

To destroy selected deployment environments ccp cleanup command can be
used, e.g. to destroy deployment #2:

ccp --config-file ccp-cli-config-2.yaml cleanup

 Mysql Galera Guide

Mysql Galera Guide

This guide provides an overview of Galera implementation in CCP.

Overview

Galera Cluster is a synchronous multi-master database cluster, based on
synchronous replication and MySQL/InnoDB. When Galera Cluster is in use, you
can direct reads and writes to any node, and you can lose any individual node
without interruption in operations and without the need to handle complex
failover procedures.

CCP implementaion details

Entrypoint script

To handle all required logic, CCP has a dedicated entrypoint script for
Galera and its side-containers. Because of that, Galera pods are slightly
different from the rest of CCP pods. For example, Galera container still uses
CCP global entrypoint, but it executes Galera entrypoint, which is executing
MySQL and handles all required logic, like bootstrapping, fail detection, etc.

Galera pod

Each Galera pod consists of 3 containers:

	galera

	galera-checker

	galera-haproxy

galera - a container which runs Galera itself.

galera-checker - a container with galera-checker script. It is used to
check readiness and liveness of the Galera node.

galera-haproxy - a container with a haproxy instance.

Note

More info about each container is available in the
“Galera containers” section.

Etcd usage

The current implementation uses etcd to store cluster state. The default etcd
root the directory will be /galera/k8scluster.

Additional keys and directories are:

	leader - key with the IP address of the current leader. Leader - is just
a single, random Galera node, which haproxy will be used as a backend.

	nodes/ - directory with current Galera nodes. Each node key will be
named as an IP address of the node and value will be a Unix time of the key
creation.

	queue/ - directory with current Galera nodes waiting in the recovery
queue. This is needed to ensure that all nodes are ready, before looking for
the node with the highest seqno. Each node key will be named as an IP addr
of the node and value will be a Unix time of the key creation.

	seqno/ - directory with current Galera nodes seqno’s.
Each node key will be named as an IP address of the node and its value will
be a seqno of the node’s data.

	state - key with current cluster state. Can be “STEADY”, “BUILDING” or
“RECOVERY”

	uuid - key with current uuid of the Galera cluster. If a new node will
have a different uuid, this will indicate that we have a split brain
situation. Nodes with the wrong uuid will be destroyed.

Galera containers

galera

This container runs Galera daemon, plus handles all the bootstrapping,
reconnecting and recovery logic.

At the start of the container, it checks for the init.ok file in the Galera
data directory. If this file doesn’t exist, it removes all files from the
data directory, running Mysql init, to create base mysql data files, after
we’re starting mysqld daemon without networking and setting needed permissions
for expected users.

If init.ok file is found, it runs the mysqld_safe --wsrep-recover
to recover Galera related information and write it to the grastate.dat
file.

After that, it checks the cluster state and depending on the current state
it chose required scenario.

galera-checker

This container is used for liveness and readiness checks of Galera pod.

To check if this Galera pod is ready it checks for the following things:

	wsrep_local_state_comment = “Synced”

	wsrep_evs_state = “OPERATIONAL”

	wsrep_connected = “ON”

	wsrep_ready = “ON”

	wsrep_cluster_state_uuid = uuid in the etcd

To check if this Galera pod is alive we checking the following things:

	If current cluster state is not “STEADY” - it skips liveness check.

	If it detects that SST sync is in progress - it skips liveness check.

	If it detects that there is no Mysql pid file yet - it skips liveness
check.

	If node “wsrep_cluster_state_uuid” differs from the etcd one - it kills
Galera container, since it’s a “split brain” situation.

	If “wsrep_local_state_comment” is “Joined”, and the previous state was
“Joined” too - it kills Galera container since it can’t finish joining
to the cluster for some reason.

	If it caught any exception during the checks - it kills Galera container.

If all checks passed - we’re deciding that Galera pod is alive.

galera-haproxy

This container is used to run haproxy daemon, which is used to send all traffic
to a single Galera pod.

This is needed to avoid deadlocks and stale reads. It chooses the “leader”
out of all available Galera pods and once leader is chosen, all haproxy
instances update their configuration with the new leader.

Supported scenarios

Initial bootstrap

In this scenario, there is no working Galera cluster yet. Each node trying to
get the lock in etcd, first one which can start cluster bootstrapping. After
it’s done, next node gets the lock and connects to the existing cluster.

Note

During the bootstrap state of the cluster will be “BUILDING”. It will
be changed to “STEADY” after last node connection.

Re-connecting to the existing cluster

In this scenario, Galera cluster is already available. In most case it will be
a node re-connection after some failures, such as node reboot. Each node tries
to get the lock in etcd, once lock acquiring node connects to the existing
cluster.

Note

During this scenario state of the cluster will be “STEADY”.

Recovery

This scenario could be triggered by two possible options:

	Operator manually sets cluster state in etcd to the “RECOVERY”

	New node does a few checks before bootstrapping, if it finds that cluster
state is “STEADY”, but there is zero nodes in the cluster - it assumes that
cluster has been destroyed somehow and we need to run recovery. In that case,
it sets the state to the “RECOVERY” and starts recovery scenario.

During the recovery scenario cluster bootstrapping is different from the
“Initial bootstrap”. In this scenario, each node looks for its “seqno”, which
is basically the registered number of the transactions. A node with the highest
seqno will bootstrap cluster and other nodes will join it, so in the end, we
will have the latest data available before the cluster destruction.

Note

During the bootstrap state of the cluster will be “RECOVERY”. It will
be changed to “STEADY” after last node connection.

There is an option to manually choose the node to recover data from.
For details please see the “force bootstrap” section in the “Advanced features”
.

Advanced features

Cluster size

By default, galera cluster size will be 3 nodes. This is optimal for the most
cases. If you want to change it to some custom number, you need to override
cluster_size variable in the percona tree, for example:

configs:
 percona:
 cluster_size: 5

Note

Cluster size should be an odd number. Cluster size with more that 5
nodes will lead to big latency for write operations.

Force bootstrap

Sometimes operators may want to manually specify Galera node which recovery
should be done from. In that case, you need to override force_bootstrap
variable in the percona tree, for example:

configs:
 percona:
 force_bootstrap:
 enabled: true
 node: NODE_NAME

NODE_NAME should be the name of the k8s node, which will run Galera node
with required data.

Troubleshooting

Galera operation requires some advanced knowledge in Mysql and in some general
clustering conceptions. In most cases, we expect that Galera will “self-heal”
itself, in the worst case via restart, full resync and reconnection to the
cluster.

Our readiness and liveness scripts should cover this, and not allow
misconfigured or non-operational node receive production traffic.

Yet it’s possible that some failure scenarios is not covered and to fix them
some manual actions could be required.

Check the logs

Each container of the Galera pod writes detailed logs to the stdout. You could
read them via kubectl logs POD_NAME -c CONT_NAME. Make sure you check the
galera container logs and galera-checker ones.

Additionally you should check the Mysql logs in the
/var/log/ccp/mysql/mysql.log

Check the etcd state

Galera keeps its state in the etcd and it could be useful to check what is
going on in the etcd right now. Assuming that you’re using the ccp
namespace, you could check etcd state using this command:

etcdctl --endpoints http://etcd.ccp.svc.cluster.local:2379 ls -r -p --sort /galera
etcdctl --endpoints http://etcd.ccp.svc.cluster.local:2379 get /galera/k8scluster/state
etcdctl --endpoints http://etcd.ccp.svc.cluster.local:2379 get /galera/k8scluster/leader
etcdctl --endpoints http://etcd.ccp.svc.cluster.local:2379 get /galera/k8scluster/uuid

Node restart

In most cases, it should be safe to restart a single Galera node. If you need
to do it for some reason, just delete the pod, via kubectl:

kubectl delete pod POD_NAME

Full cluster restart

In some cases, you may need to restart the whole cluster. Make sure you have a
backup before doing this. To do this, set the cluster state to the “RECOVERY”:

etcdctl --endpoints http://etcd.ccp.svc.cluster.local:2379 set /galera/k8scluster/state RECOVERY

After that restart all Galera pods:

kubectl delete pod POD1_NAME POD2_NAME POD3_NAME

Once that done, Galera cluster will be rebuilt and should be operational.

Note

For more info about cluster recovery please refer to the
“Supported scenarios” section.

 Ceph and Swift guide

Ceph and Swift guide

This guide provides instruction for adding Ceph and Swift support for CCP
deployment.

Note

It’s expected that an external Ceph cluster is already available and
accessible from the all k8s nodes. If you don’t have a Ceph cluster, but
still want to try CCP with Ceph, you can use Ceph cluster deployment guide for
deploying a simple 3 node Ceph cluster.

Ceph

Prerequirements

You need to ensure that these pools are created:

	images

	volumes

	vms

And that users “glance” and “cinder” are created and have these permissions:

client.cinder
 caps: [mon] allow r
 caps: [osd] allow rwx pool=volumes, allow rwx pool=vms, allow rx pool=images
client.glance
 caps: [mon] allow r
 caps: [osd] allow rwx pool=images, allow rwx pool=vms

Deploy CCP with Ceph

In order to deploy CCP with Ceph you have to edit the ccp.yaml the file:

configs:
 ceph:
 fsid: "FSID_OF_THE_CEPH_CLUSTER"
 mon_host: "CEPH_MON_HOSTNAME"
 cinder:
 ceph:
 enable: true
 key: "CINDER_CEPH_KEY"
 rbd_secret_uuid: "RANDOM_UUID"
 glance:
 ceph:
 enable: true
 key: "GLANCE_CEPH_KEY"
 nova:
 ceph:
 enable: true

Example:

configs:
 ceph:
 fsid: "afca8524-2c47-4b81-a0b7-2300e62212f9"
 mon_host: "10.90.0.5"
 cinder:
 ceph:
 enable: true
 key: "AQBShfJXID9pFRAAm4VLpbNXa4XJ9zgAh7dm2g=="
 rbd_secret_uuid: "b416770d-f3d4-4ac9-b6db-b6a7ac1c61c0"
 glance:
 ceph:
 enable: true
 key: "AQBShfJXzXyNBRAA5kqXzCKcFoPBn2r6VDYdag=="
 nova:
 ceph:
 enable: true

	fsid - Should be the same as fsid variable in the Ceph cluster
ceph.conf file.

	mon_host - Should contain any Ceph mon node IP or hostname.

	key - Should be taken from the corresponding Ceph user. You can
use the ceph auth list command on the Ceph node to fetch list of all
users and their keys.

	rbd_secret_uuid - Should be randomly generated. You can use the
uuidgen command for this.

Make sure that your deployment topology has a cinder service. You could
use etc/topology-with-ceph-example.yaml as a reference.

Now you’re ready to deploy CCP with Ceph support.

Swift

Prerequirements

Make sure that your deployment topology has a radosgw service. You could
use etc/topology-with-ceph-example.yaml as a reference.

Deploy CCP with Swift

Note

Currently, in CCP, only Glance supports Swift as a backend.

In order to deploy CCP with Swift you have to edit ccp.yaml the file:

ceph:
 fsid: "FSID_OF_THE_CEPH_CLUSTER"
 mon_host: "CEPH_MON_HOSTNAME"
radosgw:
 key: "RADOSGW_CEPH_KEY"
glance:
 swift:
 enable: true
 store_create_container_on_put: true

Example:

ceph:
 fsid: "afca8524-2c47-4b81-a0b7-2300e62212f9"
 mon_host: "10.90.0.2,10.90.0.3,10.90.0.4"
radosgw:
 key: "AQBIGP5Xs6QFCRAAkCf5YWeBHBlaj6S1rkcCYA=="
glance:
 swift:
 enable: true
 store_create_container_on_put: true

Troubleshooting

If the Glance image upload failed, you should check few things:

	Glance-api pod logs

	Radosgw pod logs

	Keystone pod logs

 Ceph cluster deployment

Ceph cluster deployment

Warning

This setup is very simple, limited, and not suitable for real
production use. Use it as an example only.

Using this guide you’ll deploy a 3 nodes Ceph cluster with RadosGW.

Prerequirements

	Three nodes with at least one unused disk available.

	In this example we’re going to use Ubuntu 16.04 OS, if you’re using a
different one, you have to edit the following configs and commands to suit
your OS.

In this doc we refer to these nodes as

	ceph_node_hostname1

	ceph_node_hostname2

	ceph_node_hostname3

Installation

sudo apt install ansible
git clone https://github.com/ceph/ceph-ansible.git

Configuration

cd into ceph-ansible directory:

cd ceph-ansible

Create group_vars/all with:

ceph_origin: upstream
ceph_stable: true
ceph_stable_key: https://download.ceph.com/keys/release.asc
ceph_stable_release: jewel
ceph_stable_repo: "http://download.ceph.com/debian-{{ ceph_stable_release }}"
cephx: true
generate_fsid: false
Pre-created static fsid
fsid: afca8524-2c47-4b81-a0b7-2300e62212f9
interface which ceph should use
monitor_interface: NAME_OF_YOUR_INTERNAL_IFACE
monitor_address: 0.0.0.0
journal_size: 1024
network which you want to use for ceph
public_network: 10.90.0.0/24
cluster_network: "{{ public_network }}"

Make sure you change the NAME_OF_YOUR_INTERNAL_IFACE placeholder to the
actual interface name, like eth0 or ens* in modern OSs.

Create group_vars/osds with:

fsid: afca8524-2c47-4b81-a0b7-2300e62212f9
Devices to use in ceph on all osd nodes.
Make sure the disk is empty and unused.
devices:
- /dev/sdb
Journal placement option.
This one means that journal will be on the same drive but another partition
journal_collocation: true

Create group_vars/mons with:

fsid: afca8524-2c47-4b81-a0b7-2300e62212f9
monitor_secret: AQAjn8tUwBpnCRAAU8X0Syf+U8gfBvnbUkDPyg==

Create inventory file with:

[mons]
ceph_node_hostname1
ceph_node_hostname2
ceph_node_hostname3
[osds]
ceph_node_hostname1
ceph_node_hostname2
ceph_node_hostname3

Deploy

Make sure you have passwordless ssh key access to each node and run:

ANSIBLE_HOST_KEY_CHECKING=False ansible-playbook -i inventory_file site.yml.sample

Check Ceph deployment

Go to any ceph node and run with root permissions:

sudo ceph -s

health should be HEALTH_OK. HEALTH_WARN signify non-critical error, check
the description of the error to get the idea of how to fix it. HEALTH_ERR
signify critical error or a failed deployment.

Configure pools and users

On any Ceph node run:

sudo rados mkpool images
sudo rados mkpool volumes
sudo rados mkpool vms
sudo rados mkpool backups

sudo ceph auth get-or-create client.glance osd 'allow class-read object_prefix rbd_children, allow rwx pool=images, allow rwx pool=vms' mon 'allow r' -o /etc/ceph/ceph.client.glance.keyring
sudo ceph auth get-or-create client.cinder osd 'allow class-read object_prefix rbd_children, allow rwx pool=volumes, allow rwx pool=backups, allow rwx pool=vms, allow rwx pool=images' mon 'allow r' -o /etc/ceph/ceph.client.cinder.keyring
sudo ceph auth get-or-create client.radosgw.gateway osd 'allow rwx' mon 'allow rwx' -o /etc/ceph/ceph.client.radosgw.keyring

To list all user with permission and keys, run:

sudo ceph auth list

Now you’re ready to use this Ceph cluster with CCP.

 SR-IOV guide

SR-IOV guide

This guide provides an instruction for enabling SR-IOV functionality in Fuel CCP.

Introduction

The SR-IOV specification defines a standardized mechanism to virtualize PCIe devices. This mechanism can virtualize
a single PCIe Ethernet controller to appear as multiple PCIe devices. Each device can be directly assigned to
an instance, bypassing the hypervisor and virtual switch layer. As a result, users are able to achieve low latency and
near-line wire speed.

The following terms are used throughout this document:

	Term
	Definition

	PF
	Physical Function. The physical Ethernet controller that supports SR-IOV.

	VF
	Virtual Function. The virtual PCIe device created from a physical Ethernet controller.

Prerequirements

1. Ensure that a host has a SR-IOV capable device. One way of identifying whether a device supports SR-IOV is to check
for an SR-IOV capability in the device configuration. The device configuration also contains the number of VFs
the device can support. The example below shows a simple test to determine if the device located at the bus, device,
and function number 1:00.0 can support SR-IOV.

lspci -vvv -s 02:00.0 | grep -A 9 SR-IOV
 Capabilities: [160 v1] Single Root I/O Virtualization (SR-IOV)
 IOVCap: Migration-, Interrupt Message Number: 000
 IOVCtl: Enable+ Migration- Interrupt- MSE+ ARIHierarchy+
 IOVSta: Migration-
 Initial VFs: 32, Total VFs: 32, Number of VFs: 7, Function Dependency Link: 00
 VF offset: 16, stride: 1, Device ID: 154c
 Supported Page Size: 00000553, System Page Size: 00000001
 Region 0: Memory at 0000000090400000 (64-bit, prefetchable)
 Region 3: Memory at 0000000092c20000 (64-bit, prefetchable)
 VF Migration: offset: 00000000, BIR: 0

	Enable IOMMU in Linux by adding intel_iommu=on to the kernel parameters, for example, using GRUB.

	Bring up the PF.

ip l set dev ens2f1 up

	Allocate the VFs, for example via the PCI SYS interface:

echo '7' > /sys/class/net/ens2f1/device/sriov_numvfs

	Verify that the VFs have been created.

ip l show ens2f1
5: ens2f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000
link/ether 0c:c4:7a:bd:42:ac brd ff:ff:ff:ff:ff:ff
vf 0 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 1 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 2 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 3 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 4 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 5 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 6 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

Deploy CCP with SR-IOV

Neutron

In OpenStack SR-IOV doesn’t work with VxLAN tunneling, that is why it is required to enable either VLAN of
flat tenant network type in the configs.neutron section of the CCP configuration file:

ml2:
 tenant_network_types:
 - "vlan"

All Neutron SR-IOV specific parameters are located in the configs.neutron.sriov section. Example configuration:

sriov:
 enabled: true
 devices:
 - name: "ens2f1"
 physnets:
 - "physnet1"
 exclude_vfs:
 - 0000:02:00.2
 - 0000:02:00.3

	enabled - Boolean. Enables and disables the SR-IOV in Neutron, false by default.

	
	devices - List. A node-specific list of SR-IOV devices. Each element of the list has 2 mandatory fields: name and physnets.

	
	name is a name of the SR-IOV interface.

	physnets is a list of of names of physical networks a given device maps to.

	If exclude_vfs is omitted all the VFs associated with a given device may be configured by the agent. To exclude specific VFs, add them to the exclude_devices parameter as shown above.

A new role should be added to compute nodes: neutron-sriov-nic-agent.

Nova

All Nova SR-IOV specific parameters are located in the configs.nova.sriov section. Example configuration:

sriov:
 enabled: true
 pci_alias:
 - name: "82599ES"
 product_id: "10fb"
 vendor_id: "8086"
 - name: "X710"
 product_id: "1572"
 vendor_id: "8086"
 pci_passthrough_whitelist:
 - devname: "ens2f1"
 physical_network: "physnet1"

	enabled - Boolean. Enables and disables the SR-IOV in Nova, false by default.

	pci_alias - List, optional. An alias for a PCI passthrough device requirement. This allows users to specify the alias in the

extra_spec for a flavor, without needing to repeat all the PCI property requirements.

	
	pci_passthrough_whitelist - List. White list of PCI devices available to VMs.

	
	devname is a name of the SR-IOV interface.

	physical_network - name of a physical network to map a device to.

Additionally it is required to add PciPassthroughFilter to the list of enable filters in Nova scheduler:

scheduler:
 enabled_filters:
 - RetryFilter
 - AvailabilityZoneFilter
 - RamFilter
 - DiskFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter
 - ServerGroupAntiAffinityFilter
 - ServerGroupAffinityFilter
 - SameHostFilter
 - DifferentHostFilter
 - PciPassthroughFilter

Sample CCP configuration

services:
 database:
 service_def: galera
 rpc:
 service_def: rabbitmq
 notifications:
 service_def: rabbitmq
nodes:
 node1:
 roles:
 - db
 - messaging
 - controller
 - openvswitch
 node[2-3]:
 roles:
 - db
 - messaging
 - compute
 - openvswitch
roles:
 db:
 - database
 messaging:
 - rpc
 - notifications
 controller:
 - etcd
 - glance-api
 - glance-registry
 - heat-api-cfn
 - heat-api
 - heat-engine
 - horizon
 - keystone
 - memcached
 - neutron-dhcp-agent
 - neutron-l3-agent
 - neutron-metadata-agent
 - neutron-server
 - nova-api
 - nova-conductor
 - nova-consoleauth
 - nova-novncproxy
 - nova-scheduler
 compute:
 - neutron-sriov-nic-agent
 - nova-compute
 - nova-libvirt
 openvswitch:
 - neutron-openvswitch-agent
 - openvswitch-db
 - openvswitch-vswitchd
configs:
 private_interface: ens1f0
 neutron:
 physnets:
 - name: "physnet1"
 bridge_name: "br-ex"
 interface: "ens1f1"
 flat: false
 vlan_range: "50:1030"
 ml2:
 tenant_network_types:
 - "vlan"
 sriov:
 enabled: true
 devices:
 - name: "ens2f1"
 physnets:
 - "physnet1"
 exclude_vfs:
 - 0000:02:00.2
 - 0000:02:00.3
 nova:
 sriov:
 enabled: true
 pci_alias:
 - name: "82599ES"
 product_id: "10fb"
 vendor_id: "8086"
 - name: "X710"
 product_id: "1572"
 vendor_id: "8086"
 pci_passthrough_whitelist:
 - devname: "ens2f1"
 physical_network: "physnet1"
 scheduler:
 enabled_filters:
 - RetryFilter
 - AvailabilityZoneFilter
 - RamFilter
 - DiskFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter
 - ServerGroupAntiAffinityFilter
 - ServerGroupAffinityFilter
 - SameHostFilter
 - DifferentHostFilter
 - PciPassthroughFilter

Known limitations

	When using Quality of Service (QoS), max_burst_kbps (burst over max_kbps) is not supported. In addition, max_kbps is rounded to Mbps.

	Security groups are not supported when using SR-IOV, thus, the firewall driver is disabled.

	SR-IOV is not integrated into the OpenStack Dashboard (horizon). Users must use the CLI or API to configure SR-IOV interfaces.

	Live migration is not supported for instances with SR-IOV ports.

 Enable Distributed Virtual Routing in Neutron

Enable Distributed Virtual Routing in Neutron

This guide provides an instruction for enabling DVR support in a
CCP deployment.

Note

DVR mode applies only for Neutron reference implementation with
ML2/OpenVSwitch plugin. In order to determine distributed routing
capabilities of other plugins/drivers please refer to their corresponding
documentation.

Introduction

DVR

	Distributes L3 Routers across compute nodes when required by VMs

	L3 and Metadata Agents are running on each and every compute node

	Inter-subnets traffic is no longer affected by performance of one
node with l3 agent

	Traffic for VMs with floating IP is no longer affected by performance
of one node with l3 agent

	Removal of single l3 agent node as single-point-of-failure for all
inter-tenant traffic and Floating IP traffic

[image: _images/neutron_with_dvr.png]

Sample CCP configuration

ccp.yaml may look like:

builder:
 push: True
registry:
 address: "127.0.0.1:31500"
repositories:
 skip_empty: True
services:
 database:
 service_def: galera
 rpc:
 service_def: rabbitmq
 notifications:
 service_def: rabbitmq
nodes:
 node1:
 roles:
 - db
 - messaging
 - controller
 - openvswitch
 node[2-3]:
 roles:
 - db
 - messaging
 - compute
 - openvswitch
roles:
 db:
 - database
 messaging:
 - rpc
 - notifications
 controller:
 - etcd
 - glance-api
 - glance-registry
 - heat-api-cfn
 - heat-api
 - heat-engine
 - horizon
 - keystone
 - memcached
 - neutron-dhcp-agent
 - neutron-l3-agent
 - neutron-metadata-agent
 - neutron-server
 - nova-api
 - nova-conductor
 - nova-consoleauth
 - nova-novncproxy
 - nova-scheduler
 compute:
 - nova-compute
 - nova-libvirt
 - neutron-l3-agent-compute
 - neutron-metadata-agent
 openvswitch:
 - neutron-openvswitch-agent
 - openvswitch-db
 - openvswitch-vswitchd
configs:
 private_interface: ens7
 public_interface: ens7
 neutron:
 dvr: True
 physnets:
 - name: "physnet1"
 bridge_name: "br-ex"
 interface: "ens3"
 flat: true
 vlan_range: false

Compute node now has 2 additional roles:
neutron-l3-agent-compute and neutron-metadata-agent.

Note

For Floating IPs to work properly, DVR requires each compute node
to have access to the external net.

 Using Calico instead of Open vSwitch

Using Calico instead of Open vSwitch

This guide describes how to deploy and run OpenStack environment with Calico
ml2 Neutron plugin instead of OVS on top of Kubernetes cluster and how to
integrate OpenStack and Kubernetes workloads.

Introduction

Calico’s pure L3 approach to data center networking integrates seamlessly with
cloud orchestration systems (such as OpenStack) to enable secure IP
communication between virtual machines, containers, or bare metal workloads.

By using Calico network plugin for both Kubernetes and OpenStack Containerized
Control Plane (CCP) we can provide pure L3 fabric and cross-workload security
for mixed workloads.

Deployment diagram:

[image: _images/ccp-calico.png]

Deployment will look like this:

	Neutron is configured to use networking-calico ML2 plugin.

	Neutron DHCP agent is replaced with Calico DHCP agent.

	Open vSwitch pods are removed from the deployment topology.

	Additional Kubernetes proxy service is required to provide the connectivity
from CCP pods to the main Etcd cluster (they cannot connect to etcd-proxy
on a localhost since some containers are running in isolated network space,
for example neutron-server).

	CCP Calico components are connected to the same Etcd DB as Calico services
providing networking for Kubernetes.

	Calico/felix from calico/node container has reporting enabled.

What is needed to deploy CCP with Calico network plugin:

	Runnning K8s environment with Calico network plugin (for a tested,
recommended setup please check out
this guide [http://fuel-ccp.readthedocs.io/en/latest/quickstart.html]).

	calico/node version 0.23.0 or higher (you can use latest image tag).

	CCP installed on a machine with access to kube-apiserver (e.g. K8s
master node).

	CCP CLI config file with custom deployment topology.

Sample deployment

Sample deployment model

Following is an example of CCP deployment with Calico networking integrated with
Kubernetes Calico components. Here is breakdown of services assignment to nodes
(please note this isn’t yet CCP topology file):

node1:
 - controller
 - neutron-server
 - neutron-metadata-agent
node[2-3]:
 - compute
 - calico-dhcp-agent

Configuring requirements in Kubernetes cluster

Before deploying CCP we should run etcd proxy service (please don’t forget to
replace IP addresses in this sample with your K8s cluster Etcd nodes’ IPs):

cat > /var/tmp/etcd-k8s-svc.yaml << EOF
kind: "Endpoints"
apiVersion: "v1"
metadata:
 name: "etcd-k8s"
subsets:
 - addresses:
 - ip: "10.210.1.11"
 - ip: "10.210.1.12"
 - ip: "10.210.1.13"
 ports:
 - port: 2379
 name: "etcd-k8s"

apiVersion: "v1"
kind: "Service"
metadata:
 name: "etcd-k8s"
spec:
 ports:
 - name: "etcd-k8s"
 port: 2379
 protocol: TCP
 sessionAffinity: None
 type: NodePort
status:
 loadBalancer: {}
EOF

kubectl --namespace=default create -f /var/tmp/etcd-k8s-svc.yaml

We also need to enable reporting in Felix:

etcdctl set /calico/v1/config/ReportingIntervalSecs 60

And add some custom export filters for BGP agent:

cat << EOF | etcdctl set /calico/bgp/v1/global/custom_filters/v4/tap_iface
 if (ifname ~ "tap*") then {
 accept;
 }
EOF

Sample CCP configuration

Let’s write CCP CLI configuration file now, make sure you have the following
in your configuration file (let’s say it’s ccp.yaml):

kubernetes:
 namespace: "ccp"

configs:
 neutron:
 plugin_agent: "calico"
 calico:
 etcd_host: "etcd-k8s"
 etcd_port: "2379"

nodes:
 node1:
 roles:
 - controller
 - neutron-agents
 node[2-3]:
 roles:
 - compute
 - calico

roles:
 controller:
 - etcd
 - glance-api
 - glance-registry
 - heat-api-cfn
 - heat-api
 - heat-engine
 - horizon
 - keystone
 - mariadb
 - memcached
 - neutron-server
 - nova-api
 - nova-conductor
 - nova-consoleauth
 - nova-novncproxy
 - nova-scheduler
 - rabbitmq
 neutron-agents:
 - neutron-metadata-agent
 compute:
 - nova-compute
 - nova-libvirt
 calico:
 - calico-dhcp-agent

Now let’s build images and push them to registry if you have not done this
already:

ccp deploy --config-file ccp.yaml build

We can now deploy CCP as usually:

ccp deploy --config-file ccp.yaml deploy

CCP will create namespace named ccp and corresponding jobs, pods and services
in it. To know when deployment is ready to be accessed kubectl get jobs
command can be used (all jobs should finish):

kubectl --namespace ccp get jobs

Creating networks and instances in OpenStack

After CCP deployment is complete we can create Neutron networks and run VMs.

Install openstack-client:

pip install python-openstackclient

openrc file for current deployment was created in the current working
directory. To use it run:

source openrc-ccp

Run test environment deploy script:

bash fuel-ccp/tools/deploy-test-vms.sh -a create -c -n NUMBER_OF_VMS

This script will create flavor, upload cirrios image to glance, create network
and subnet and launch bunch of cirrios based VMs.

Uninstalling and undoing customizations

To destroy deployment environment ccp cleanup command can be used:

ccp --config-file ccp.yaml ccp cleanup

The following commands can be used to undo related customizations in Calico:

etcdctl rm /calico/bgp/v1/global/custom_filters/v4/tap_iface
etcdctl set /calico/v1/config/ReportingIntervalSecs 0
etcdctl ls /calico/felix/v1/host -r | grep status | xargs -n1 etcdctl rm

Remove Etcd proxy service:

kubectl --namespace=default delete -f /var/tmp/etcd-k8s-svc.yaml

 Using OpenDaylight instead of Open vSwitch

Using OpenDaylight instead of Open vSwitch

This guide describes how to deploy and run OpenStack environment with
OpenDaylight ML2 Neutron plugin instead of the reference OpenVSwitch ML2 on top
of Kubernetes cluster using fuel-ccp.

Introduction

OpenDaylight (ODL) is a modular Open SDN platform for networks of any size and
scale. OpenStack can use OpenDaylight as its network management provider
through the Modular Layer 2 (ML2) north-bound plug-in. OpenDaylight manages
the network flows for the OpenStack compute nodes via the OVSDB south-bound
plug-in.

Deployment will look like this:

	new Docker container and service: opendaylight

	openvswitch service on nodes is configured to be managed by ODL

	neutron is configured to use networking-odl ML2 plugin.

	neutron openvswitch and l3 agent pods are removed from the deployment
topology.

What is needed to deploy CCP with ODL network plugin:

	Runnning K8s environment with ODL network plugin (for a tested,
recommended setup please check out the QuickStart Guide [http://fuel-ccp.readthedocs.io/en/latest/quickstart.html]).

	CCP installed on a machine with access to kube-apiserver (e.g. K8s
master node).

	CCP CLI config file with custom deployment topology.

Sample deployment

Sample CCP configuration

Let’s write CCP CLI configuration file now, make sure you have the following
in your configuration file (let’s say it’s ccp.yaml):

builder:
 push: True
registry:
 address: "127.0.0.1:31500"
repositories:
 skip_empty: True
nodes:
 node1:
 roles:
 - db
 - messaging
 - controller
 - openvswitch
 - opendaylight
 node[2-3]:
 roles:
 - db
 - messaging
 - compute
 - openvswitch
roles:
 db:
 - galera
 messaging:
 - rabbitmq
 controller:
 - etcd
 - glance-api
 - glance-registry
 - heat-api
 - heat-engine
 - horizon
 - keystone
 - memcached
 - neutron-dhcp-agent
 - neutron-metadata-agent
 - neutron-server
 - nova-api
 - nova-conductor
 - nova-consoleauth
 - nova-novncproxy
 - nova-scheduler
 compute:
 - nova-compute
 - nova-libvirt
 openvswitch:
 - openvswitch-db
 - openvswitch-vswitchd
 opendaylight:
 - opendaylight
configs:
 private_interface: eth1
 neutron:
 plugin_agent: "opendaylight"
versions:
 ovs_version: "2.5.1"

For the instructions for building images and deploying CCP refer to the
QuickStart Guide [http://fuel-ccp.readthedocs.io/en/latest/quickstart.html].

To build only the opendaylight Docker image run:

ccp deploy --config-file ccp.yaml build -c opendaylight

To deploy only the opendaylight component run:

ccp deploy --config-file ccp.yaml deploy -c opendaylight

Check configuration

To check that neutron has been configured to work with OpenDaylight, attach
to neutron-server container and run:

$ grep mechanism_drivers /etc/neutron/plugins/ml2/ml2_conf.ini
mechanism_drivers = opendaylight, logger

OpenDaylight creates only one bridge br-int, with all traffic being managed by
OpenFlow, including routing and applying security group rules. To inspect flows,
attach to an openvswitch-vswitchd container and exec:

ovs-ofctl -O OpenFlow13 dump-flows br-int

To connect to OpenDaylight console run the following command in opendaylight container:

/odl/bin/client

 Ironic guide

Ironic guide

This guide provides an instruction for adding Ironic support for
CCP deployment.

Underlay

Note

That it’s not the CCP responsibility to manage networking for baremetal servers.
Ironic assumes that networking is properly configured in underlay.

Prerequirements

	Ironic conductor has access to IPMI of baremetal servers
or to hypervisor when baremetal server is simulated by VM.

	Baremetal servers are attached to physical baremetal network.

	Swift, Ironic API endpoints, neutron-dhcp-agent, PXE/iPXE services
are accessible from baremetal network.

	Swift and Ironic API endpoints has valid SSL certificate
or Ironic deploy driver allows unverified connections.

	Baremetal network is accessible from Ironic conductor.

Neutron

Prerequirements

Ironic requires single flat network in Neutron which has L2 connectivity to physical baremetal network
and appropriate L3 settings.

Example case when required access to Ironic services provided via Neutron external network:

Create external network
neutron net-create ext --router:external true --shared --provider:network_type flat --provider:physical_network physnet1

Create subnet in external network, here 10.200.1.1 - is provider gateway
neutron subnet-create --name ext --gateway 10.200.1.1 --allocation-pool start=10.200.1.10,end=10.200.1.200 ext 10.200.1.0/24

Create internal network, here physnet2 is mapped to physical baremetal network
neutron net-create --shared --provider:network_type flat --provider:physical_network physnet2 baremetal

Create subnet in internal network, here 10.200.2.1 - is address of Neutron router, 10.11.0.174 - is address of DNS server which can resolve external endpoints
neutron subnet-create --name baremetal --gateway 10.200.2.1 --allocation-pool start=10.200.2.10,end=10.200.2.200 --dns-nameserver 10.11.0.174 baremetal 10.200.2.0/24

Create router and connect networks
neutron router-create r1
neutron router-gateway-set r1 ext
neutron router-interface-add r1 baremetal

Example case when required access to Ironic services provided directly from baremetal network:

Create internal network, here physnet2 is mapped to physical baremetal network
neutron net-create --shared --provider:network_type flat --provider:physical_network physnet2 baremetal

Create subnet in internal network, here 10.200.2.1 - is address Underlay router, which provides required connectivity
neutron subnet-create --name baremetal --gateway 10.200.2.1 --allocation-pool start=10.200.2.10,end=10.200.2.200 --dns-nameserver 10.11.0.174 baremetal 10.200.2.0/24

Swift

Prerequirements

Make sure that Radosgw is deployed, available and configured in Glance as default Swift storage backend.
Refer to Ceph and Swift guide guide for deploy Radosgw and configure Glance.

Ironic

Prerequirements

	Underlay networking

	Neutron networking

	Glance/Swift configuration

Deploy CCP with Ironic

In order to deploy CCP with Ironic you have to deploy following components:
* ironic-api
* ironic-conductor
* nova-compute-ironic

Note

nova-compute-ironic is same as regular nova-compute service,
but with special compute_driver required for integration Nova with Ironic.
It requires neutron-openvswitch-agent running on same host.
Is not possible to deploy nova-compute-ironic and regular nova-compute on same host.
nova-compute-ironic has no significant load and can be deployed on controller node.

Ironic requires single endpoints for Swift and API accessible from remote baremetal network,
Ingress should be configured.

Example of ccp.yaml:

roles:
 controller:
 [all default controller services]
 - ironic-api
 - ironic-conductor
 - nova-compute-ironic
configs:
 neutron:
 physnets:
 - name: "physnet1"
 bridge_name: "br-ex"
 interface: "ens8"
 flat: true
 vlan_range: "1001:1030"
 - name: "physnet2"
 bridge_name: "br-bm"
 interface: "ens9"
 flat: true
 vlan_range: "1001:1030"
 ceph:
 fsid: "a1adbec9-98cb-4d75-a236-2c595b73a8de"
 mon_host: "10.11.0.214"
 radosgw:
 key: "AQCDIStYGty1ERAALFeBif/6Y49s9S/hyVFXyw=="
 glance:
 swift:
 enable: true
 ingress:
 enabled: true

Now you’re ready to deploy Ironic to existing CCP cluster.

ccp deploy -c ironic-api ironic-conductor nova-compute-ironic

Provision baremetal instance

Depends on selected deploy driver, provision procedure may differ.
Basically provision require following steps:
* Upload service and user’s images to Glance
* Create baremetal node in Ironic
* Create node port in Ironic
* Create appropriate flavor in Nova
* Boot instance

Example with agent_ssh driver:

Note

Agent drivers will download images from Swift endpoint,
in case you using self-signed certificates, make sure that agent allows unverified SSL connections.

Upload service kernel/ramdisk images, required for driver:

wget https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/tinyipa-stable-newton.vmlinuz
wget https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/tinyipa-stable-newton.gz

glance image-create --name kernel \
--visibility public \
--disk-format aki --container-format aki \
--file tinyipa-stable-newton.vmlinuz

glance image-create --name ramdisk \
--visibility public \
--disk-format ari --container-format ari \
--file tinyipa-stable-newton.gz

Upload user’s image, which should be provisioned on baremetal node:

wget http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img

glance image-create --name cirros \
--visibility public \
--disk-format qcow2 \
--container-format bare \
--file cirros-0.3.4-x86_64-disk.img \
--property hypervisor_type='baremetal' \
--property cpu_arch='x86_64'

Create baremetal node with port in Ironic:

ironic node-create \
-n vm_node1 \
-d agent_ssh \
-i deploy_kernel=2fe932bf-a961-4d09-b0b0-72806edf05a4 \ # UUID of uploaded kernel image
-i deploy_ramdisk=5546dead-e8a4-4ebd-93cf-a118580c33d5 \ # UUID of uploaded ramdisk image
-i ssh_address=10.11.0.1 \ # address of hypervisor with VM (simulated baremetal server)
-i ssh_username=user \ # credentials for ssh access to hypervisor
-i ssh_password=password \
-i ssh_virt_type=virsh \
-p cpus=1 \
-p memory_mb=3072 \
-p local_gb=150 \
-p cpu_arch=x86_64

ironic port-create -n vm_node1 -a 52:54:00:a4:eb:d5 # MAC address of baremetal server

Verify that node is available as Nova hypervisor:

ironic node-validate vm_node1 # Should has no errors in management, power interfaces
nova hypervisor-show 1 # Should output correct information about resources (cpu, mem, disk)

Create nova flavor:

nova flavor-create bm_flavor auto 3072 150 1
nova flavor-key bm_flavor set cpu_arch=x86_64

Boot baremetal instance:

nova boot --flavor bm_flavor \
--image 11991c4e-95fd-4ad1-87a3-c67ec31c46f3 \ # Uploaded Cirros image
--nic net-id=0824d199-5c2a-4c25-be2c-14b5ab5a2838 \ # UUID of Neutron baremetal network
bm_inst1

Troubleshooting

If something goes wrong, please ensure first:
* You understand how Ironic works
* Underlay networking is configured properly

For more information about issues, you may enable ironic.logging_debug
and check logs of following pods:
- nova-scheduler
- nova-compute-ironic
- ironic-api
- ironic-conductor
- neutron-server

 ZeroMQ Guide

ZeroMQ Guide

This guide provides information about how to enable zmq in the CCP.

To use zmq as an rpc backend the following steps are required:

	fuel-ccp-zmq repository should be added to the repositories list:

repositories:
 repos:
 - git_url: https://git.openstack.org/openstack/fuel-ccp-zmq
 name: fuel-ccp-zmq

	zmq-proxy and redis images should be built:

ccp build -c zmq-proxy redis

	rpc service should be configured to use zmq:

services:
 rpc:
 service_def: zmq-proxy

	rpc and redis services should be added to topology. Example of such
topology provided in fuel-ccp/etc/topology-with-zmq-example.yaml

	configs should be extended with the following values:

configs:
 messaging:
 backend:
 rpc: zmq

Pretty much the same steps required to enable zmq as a notifications backend:

services:
 notifications:
 service_def: zmq-proxy

configs:
 messaging:
 backend:
 notifications: zmq

 Services Known Issues

Services Known Issues

This sections describe known issues and corresponding workarounds, if they are.

[Heat] WaitCondition and SoftwareDeployment resources

Problem description

CCP deploys Heat services with default configuration and changes endpoint_type
from publicURL to internalURL. However such configuration in Kubernetes cluster
is not enough for several type of resources like OS::Heat::Waitcondition and
OS::Heat::SoftwareDeployment, which require callback to Heat API or
Heat API CFN. Due to Kubernetes architecture it’s not possible to do such
callback on the default port value (for heat-api it’s - 8004 and 8000 for
heat-api-cfn). Note, that exactly these ports are used in endpoints registred
in keystone.

Also there is an issue with service domain name to ip resolving from VM booted
in Openstack.

	There are two ways to fix these issues, which will be described below:

	
	Out of the box, which requires just adding some data to .ccp.yaml.

	With manual actions.

Prerequisites for workarounds

Before applying workaround please make sure, that current ccp deployment
satisfies the following prerequisites:

	VM booted in Openstack can be reached via ssh (don’t forget to configure
corresponding security group rules).

	IP address of Kubernetes node, where heat-api service is run, is accessible
from VM booted in Openstack.

Workaround out of the box

This workaround is similar for both resources and it’s related to kubernetes
node external ip usage node with hardcoded node port in config.

	Add the following lines in the config .ccp.yaml:

k8s_external_ip: x.x.x.x
heat:
 heat_endpoint_type: publicURL
 api_port:
 node: 31777
 api_cfn_port:
 node: 31778

Where x.x.x.x is IP of kubernetes node, where Heat services are run.
The second line explicitly sets publicURL in Heat config for initialisation
of the heat client with public endpoint.
Next lines set hardcoded ports for services: heat-api and heat-api-cfn. User
may choose any free port from K8S range for these services.

All these options should be used together, because external ip will be used
by ccp only with node ports. Also combination of IP and port will be applied
only for public enpoint.

	After this change you may run ccp deploy command.

Warning

There are two potential risks here:

	Specified node port is in use by some other service, so user needs to change
another free port.

	Using heatclient with enabled ingress can be broken. It was not tested fully
yet.

Workaround after deploy

This workaround can be used, when Openstack is already deployed and cloud
administrator can change only one component.

	Need to gather information about Node Ports and IP of Kubernetes node with
services. User may get Node Ports for all heat API services by using
the following commands:

get Node Port API
kubectl get service heat-api -o yaml | awk '/nodePort: / {print $NF}'

get Node Port API CFN
kubectl get service heat-api-cfn -o yaml | awk '/nodePort: / {print $NF}'

Obtain service IP by executing ping command from Kubernetes host to
domain names of services (e.g. heat-api.ccp).

	Then these IP and Node ports should be used as internal endpoints for
corresponding services in keystone, i.e. replace old internal endpoints with
domain names to IP with Node Ports for heat-api and heat-api-cfn. It should
look like:

delete old endpoint
openstack endpoint delete <id of internal endpoints>

create new endpoint for heat-api
openstack endpoint create --region RegionOne \
orchestration internal http://<service IP>:<Node Port API>/v1/%\(tenant_id\)s

create new endpoint for heat-api-cfn
openstack endpoint create --region RegionOne \
cloudformation internal http://<service IP>:<Node Port API CFN>/v1/

Note

For Waitcondition resource validation simple heat template [https://github.com/openstack/heat-templates/blob/master/hot/native_waitcondition.yaml] can be
used.

	The previous steps should be enough for fixing Waitcondition resource.
However for SoftwareDeployment usage it is necessary to remove two options
from fuel-ccp-heat/service/files/heat.conf.j2 file:

	heat_waitcondition_server_url

	heat_metadata_server_url

It’s necessary, because otherwise they will be used instead of internal
endpoints. Such change requires partial redeploy, which can be done with
commands:

ccp deploy -c heat-engine heat-api heat-api-cfn

To validate, that this change was applied just check, that new containers for
these services were started.

 Neutron Configuration

Neutron Configuration

This guide provides instructions on configuring Neutron with Fuel-CCP.

Tenant network types

By default Neutron is configured to use VxLAN segmentation but it is possible
to specify other network types like VLAN or flat.

To do so add the following lines to the configs.neutron section of the CCP
configuration file:

ml2:
 tenant_network_types:
 - "vlan"
 - "vxlan"

Here tenant_network_types is an ordered list of network types to allocate as
tenant networks. Enabling several network types allows creating networks with
--provider:network_type equalling one of these types, if --provider:network_type
is not specified then the first type from the tenant_network_types list will
be used.

It is also possible to specify VxLAN VNI and VLAN ID ranges.

VxLAN VNI ranges are configured in configs.neutron.ml2 section with default range
being “1:1000”.

ml2:
 tenant_network_types:
 - "vxlan"
 vni_ranges:
 - "1000:5000"

VLAN ranges are configured per each physical network in the configs.neutron.physnets section:

physnets:
 - name: "physnet1"
 bridge_name: "br-ex"
 interface: "eno2"
 flat: false
 vlan_range: "1050:2050"
 dpdk: false

For more information on configuring physical networks refer to the QuickStart Guide [http://fuel-ccp.readthedocs.io/en/latest/quickstart.html].

 Searchlight CCP plugin documentation

Searchlight CCP plugin documentation

This is Fuel-CCP plugin for OpenStack Searchlight service.

Original searchlight service developer docs
placed here [http://docs.openstack.org/developer/searchlight/].

Overview

The Searchlight project provides indexing and search capabilities across
OpenStack resources. Its goal is to achieve high performance and flexible
querying combined with near real-time indexing. It uses Elasticsearch, a
real-time distributed indexing and search engine built on Apache Lucene, but
adds OpenStack authentication and Role Based Access Control to provide
appropriate protection of data.

CCP plugin has two components for searchlight service:

	searchlight-api

	searchlight-listener

So searchlight docker images are the following:

	ccp/searchlight-api

	ccp/searchlight-listener

You can deploy them with other components using Quick Start.

Dependencies

Searchlight depends on several services:

	Elasticsearch. Searchlight services depends on elasticsearch service, which
should be deployed on env before searchlight installation. To deploy
elasticsearch, it should be specified in CCP config file in components’ list
and (optionally, if you specified repositories manually) add next repo to
repositories repos’ list:

git_url: https://git.openstack.org/openstack/fuel-ccp-stacklight
name: fuel-ccp-stacklight

	Indexed services. Searchlight builds index on observed services, so should
be deployed after them - index will be not complete with all resources from
observed resources instead.

Configuration

Searchlight provides indexing and searching for several services, listed
here [http://docs.openstack.org/developer/searchlight/#search-plugins].
CCP plugin allows to specify, which services searchlight will handle. For
enabling/disabling service, which you want to index and listen for updates,
you need to change value searchlight.services.<desirable service> to
true in services/files/defaults.yaml (and false to disable). After that
you need to restart searchlight components and corresponding api component of
service you enabled in config, if you already deployed components.

Installation

To install and configure searchlight service, you should follow next steps:

	Ensure, that elasticsearch is ready to use. You can, for example,
list all indices:

curl -X GET elasticsearch.ccp:<elasticport>/_cat/indices?v

where elasticport is elasticsearch port, which can be found with command:

kubectl get svc elasticsearch -o yaml | awk '/port:/ {print $NF}'

and it equals to 9200 by default.

You’ll get table with next header (if you don’t use elasticsearch before,
table will be empty):

health status index pri rep docs.count docs.deleted store.size pri.store.size

	Add searchlight-api and searchlight-listener services to your CCP
configuration file (e.g. .ccp.yaml).

	Deploy these components with command:

ccp deploy -c searchlight-api searchlight-listener

and wait until their won’t be available.

	Install python-searchlightclient and also install/update
python-openstackclient with pip:

pip install --user -U python-searchlightclient python-openstackclient

	Check availability of searchlight with command
openstack search resource type list, which will display all
supported resource types to search.

Dashboard plugin

Searchlight has horizon dashboard plugin, which allows you to search and filter
resources and get detailed information about it. It already available in
horizon and activates, when searchlight is on board. Search panel places in
Projects menu.

 Designate CCP plugin documentation

Designate CCP plugin documentation

This is Fuel-CCP plugin for OpenStack Designate service.

Original designate service developer docs are
placed here [http://docs.openstack.org/developer/designate/].

Overview

Designate provides DNSaaS services for OpenStack. Designate architecture has
next components:

	designate-api – provides the standard OpenStack style REST API service;

	designate-central – is the service that handles RPC requests via the MQ,
it coordinates the persistent storage of data and applies business logic to
data from the API;

	designate-mdns – is the service that sends DNS NOTIFY and answers zone
transfer (AXFR) requests;

	designate-pool-manager – is a service that handles the states of the DNS
servers Designate manages. Since mitaka replaced with designate-worker
service;

	designate-zone-manager – is a service that handles all periodic tasks
related to the zone shard it is responsible for;

	designate-sink – is an optional service which listens for event
notifications, such as compute.instance.create.end. Currently supports Nova
and Neutron;

	designate-agent – pool manager agent backend. This is an optional
service. Agent uses an extension of the DNS protocol to send management
requests to the remote agent processes, where the requests will be processed.

CCP components comprises next services:

	designate-api;

	designate-central;

	designate-mdns, which contains three containers: designate-mdns
service, designate-worker and designate-backend-bind9 - container,
which implements bind9 backend for designate. All of them works in
collaboration and provide ability to create and manage zones and records;

	designate-agent;

	designate-sink;

	designate-pool-manager;

	designate-zone-manager.

Three last services are optional and can’t be omitted during deployment.

Configuration

Designate has configurable options for each component, which could be
set for specific node with nodes configs section. These options
are: workers and threads. They are placed in
designate.service.<service name>.<workers or threads> configs path. Also,
designate CCP plugin allows to configure defaults of domain purge: interval,
batch_size and time threshold.

CCP designate plugin has bind9 backend implemented; it enabled by default with
option designate.backend. If you want to turn off any backend, clear option’s
value - then fake backend, which has no effect for designate will be enabled.

Installation

Currently designate CCP plugin is not supported by default, so
installation has next steps:

	Add next item to repositories.repos list of CCP configuration file:

- git_url: https://git.openstack.org/openstack/fuel-ccp-designate
 name: fuel-ccp-designate

	Add designate components to roles list. Next components are required:

- designate-api
- designate-central
- designate-mdns

Components designate-sink, designate-agent,
designate-zone-manager and designate-pool-manager are optional and
could not be deployed.

	Fetch, build, deploy components.

	Install python-designateclient and also install/update
python-openstackclient with pip:

pip install --user -U python-designateclient python-openstackclient

Dashboard plugin

Designate has horizon dashboard plugin, which allows to create and manage
domains and records. It is already available in horizon and is activated when
designate is on board. Domain panel is placed in Projects menu.

 How To Contribute

How To Contribute

General info

	Bugs should be filed on launchpad [https://bugs.launchpad.net/fuel-ccp], not GitHub.

	Please follow OpenStack Gerrit Workflow [http://docs.openstack.org/infra/manual/developers.html#development-workflow] to contribute to CCP.

	Since CCP has multiple Git repositories, make sure to use Depends-On [http://docs.openstack.org/infra/manual/developers.html#cross-repository-dependencies]
Gerrit flag to create cross repository dependencies.

Useful documentation

	Please follow our Quick Start guide to deploy your environment and
test your changes.

	Please refer to CCP Docker images guide, while making changes to Docker files.

	Please refer to Application definition contribution guide, while making changes to service/*
files.

 Application definition contribution guide

Application definition contribution guide

This document gives high overview of component repository structure.

Overview

CCP provides wide spectrum of operations for microservices manipulations on
Kubernetes cluster. Each microservice is an independent component with
common architecture. Whole data releated to component can be found in the
corresponding repository. The full list of the related components can be found
by link [https://github.com/openstack?q=fuel-ccp-], where each repository has prefix fuel-ccp-*.

Structure

Component repositories have common structure:

1. Docker image related data

docker folder with Docker files, which will be used for building docker
images. Each subfolder will be processed as a separate image for building.
See detailed instructions are available in the CCP Docker images guide.

2. Application definition files

All application definition files should be located in the service/
directory, as a component_name.yaml file, for example:

service/keystone.yaml

Please refer to Application definition language for detailed description of CCP DSL syntax.

3. Application related scripts and configs

All templates, such as configs, scripts, etc, which will be used for this
service, should be located in service/<component_name>/files, for example:

service/files/keystone.conf.j2

All files inside this directory are Jinja2 templates, except the file with
default variables. Default variables for these templates should be located
in service/files/defaults.yaml inside the following section.

configs:
 <service_name>:

Description of available values can be found in the following guide
Configuration files.

4. Shared configurations templates

You can export and share across all fuel-ccp-x repositories the most common
parts of configs which are needed to use your service. In order to do this you
should locate a jinja macros with a config template in ./exports/ directory:

./exports/your_jinja_template.j2

and then use it in a config file of any other repository:

file:nova.conf.j2
{{ your_jinja_template.your_macros() }}

Well known shared template is oslo_messaging [https://github.com/openstack/fuel-ccp-rabbitmq/blob/master/exports/oslo_messaging.j2]

 CCP Docker images guide

CCP Docker images guide

This guide covers CCP specific requirements for defining Docker images.

Docker files location

All docker files should be located in docker/<component_name> directory,
for example:

docker/horizon
docker/keystone

The docker directory may contain multiple components.

Docker directory structure

Each docker directory should contain a Dockerfile.j2 file. Dockerfile.j2
is a file which contains Docker build instructions in a Jinja2 template [http://jinja.pocoo.org/docs/dev/]
format. You can add additional files, which will be used in Dockerfile.j2,
but only Dockerfile.j2 can be a Jinja2 template in this directory.

Dockerfile format

Please refer to the official Docker documentation [https://docs.docker.com/engine/reference/builder] which covers the
Dockerfile format. CCP has some additional requirements, which is:

	Use as few layers [https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/] as possible. Each command in Dockerfile creates a
layer, so make sure you’re grouping multiple RUN commands into one.

	If it’s possible, please run container from the non-root user.

	If you need to copy some scripts into the image, please place them into the
/opt/ccp/bin directory.

	Only one process should be started inside container. Do not use runit,
supervisord or any other init systems, which will allow to spawn multiple
processes in container.

	Do not use CMD and ENTRYPOINT commands in Dockerfile.j2.

	All OpenStack services should use openstack-base parent image in FROM
section. All non-OpenStack services should use base-tools parent image
in FROM section.

Here is an example of valid Dockerfile.j2: Keystone Dockerfile [https://github.com/openstack/fuel-ccp-keystone/blob/master/docker/keystone/Dockerfile.j2]

Supported Jinja2 variables

Only specific variables can actually be used in Dockerfile.j2:

	namespace - Used in the FROM section, renders into image namespace, by
default into ccp.

	tag - Used in the FROM section, renders into image tag, by default into
latest.

	maintainer - Used in the MAINTAINER section, renders into maintainer
email, by default into “MOS Microservices
<mos-microservices@mirantis.com>”

	copy_sources - Used anywhere in the Dockerfile. please refer to
corresponding documentation section below.

	Additionaly, you could use variables with software versions, please refer
to Application definition contribution guide for details.

copy_sources

The CCP CLI provides additional feature for Docker images creation, which will
help to use git repositories inside Dockerfile, it’s called copy_sources.

This feature uses configuration from service/files/defaults.yaml from the
same repository or from global config, please refer to Application definition contribution guide for
details.

Testing

After making any changes in docker directory, you should test it via build and
deploy.

To test building, please run:

ccp build -c <component_name>

For example:

ccp build -c keystone

Make sure that image is built without errors.

To test the deployment, please build new images using the steps above and after
run:

ccp deploy

Please refer to Quick Start for additional information.

 Application definition language

Application definition language

There is a description of current syntax of application definition framework.

Application definition template

service:
 name: service-name
 kind: DaemonSet
 ports:
 - internal-port:external-port
 headless: true
 hostNetwork: true
 hostPID: true
 antiAffinity: local
 annotations:
 pod:
 description: frontend ports
 service:
 description: frontend service
 containers:
 - name: container-name
 image: container-image
 probes:
 readiness: readiness.sh
 liveness: liveness.sh
 volumes:
 - name: volume-name
 type: host
 path: /path
 pre:
 - name: service-bootstrap
 dependencies:
 - some-service
 - some-other-service
 type: single
 image: some_image
 command: /tmp/bootstrap.sh
 files:
 - bootstrap.sh
 user: user
 - name: db-sync
 dependencies:
 - some-dep
 command: some command
 user: user
 daemon:
 dependencies:
 - demon-dep
 command: daemon.sh
 files:
 - config.conf
 user: user
 post:
 - name: post-command
 dependencies:
 - some-service
 - some-other-service
 type: single
 command: post.sh
 files:
 - config.conf

files:
 config.conf:
 path: /etc/service/config.conf
 content: config.conf.j2
 perm: "0600"
 user: user
 bootstrap.sh:
 path: /tmp/bootstrap.sh
 content: bootstrap.sh.j2
 perm: "0755"

Parameters description

service

	Name
	Description
	Required
	Schema
	Default

	name
	Name of the service.
	true
	string
	–

	kind
	Kind of k8s object to use for containers deployment.
	false
	one of: [“Deployment”, “DaemonSet”, “StatefulSet”]
	Deployment

	containers
	List of containers under multi-container pod.
	true
	container array
	–

	ports
	k8s Service will be created if specified (with NodePort type for now).
Only internal or both internal:external ports can be specified.
	false
	internal-port: external-port array
	–

	hostNetwork
	Use the host’s network namespace.
	false
	boolean
	false

	headless
	Create headless service.
	false
	boolean
	false

	hostPID
	Use the host’s pid namespace.
	false
	boolean
	false

	strategy
	The strategy that should be used to replace old Pods by new ones.
	false
	one of: [“RollingUpdate”, “Recreate”]
	RollingUpdate

	antiAffinity
	Restrict scheduling of pods on the same host:
local - within namespace, global - within k8s cluster
	false
	one of: [null, “global”, “local”]
	null

	annotations
	pod - annotations for pods, service - annotations for service.
	false
	string dict
	null

container

	Name
	Description
	Required
	Schema
	Default

	name
	Name of the container. It will be used to track status in etcd.
	true
	string
	–

	image
	Name of the image. registry, namespace, tag will be added by framework.
	true
	string
	–

	probes
	Readiness, liveness or both checks can be defined. Exec action will be
used for both checks.
	false
	dict with two keys:

	liveness:

	cmd

	readiness:

	cmd

	–

	volumes
	–
	false
	volume array
	–

	pre
	List of commands that need to be executed before daemon process start.
	false
	command array
	–

	daemon
	–
	true
	command
	–

	post
	The same as for “pre” except that post commands will be executed after
daemon process has been started.
	false
	command array
	–

	env
	An array of environment variables defined in kubernetes way.
	false
	env [http://kubernetes.io/docs/api-reference/v1/definitions/#_v1_envvar] array
	–

volume

	Name
	Description
	Required
	Schema
	Default

	name
	Name of the volume.
	true
	string
	–

	type
	host and empty-dir type supported for now.
	true
	one of: [“host”, “empty-dir”]
	–

	path
	Host path that should be mounted (only if type = “host”).
	false
	string
	–

	mount-path
	Mount path in container.
	false
	string
	path

	readOnly
	Mount mode of the volume.
	false
	bool
	False

command

	Name
	Description
	Required
	Schema
	Default

	name
	Name of the command. Required only for pre and post with type
single.
	
	string
	

	image
	Image that will be used to run the command. Can be used only for pre
and post with type single.
	false
	string
	same as for daemon

	command
	–
	true
	string
	–

	dependencies
	These keys will be polled from etcd before commands execution.
	false
	string array
	–

	type
	type: single means that this command should be executed once per
openstack deployment. For commands with type: single Job object will be
created.

type: local (or if type is not specified) means that command will be
executed inside the same container as a daemon process.

	false
	one of: [“single”, “local”]
	local

	files
	List of the files that maps to the keys of files dict. It defines which
files will be rendered inside a container.
	false
	file keys array
	–

	user
	–
	false
	string
	–

files

	Name
	Description
	Required
	Schema
	Default

	Name of the file to refer in files list of commands
	–
	false
	file array
	–

file

	Name
	Description
	Required
	Schema
	Default

	path
	Destination path inside a container.
	true
	string
	–

	content
	Name of the file under {{ service_repo }}/service/files directory. This
file will be rendered inside a container and moved to the destination
defined with path.
	true
	string
	–

	perm
	–
	false
	string
	–

	user
	–
	false
	string
	–

DSL versioning

Some changes in CCP framework are backward compatible and some of them are not.
To prevent situations when service definitions are being processed by
incompatible version of CCP framework, DSL versioning has been implemented.

DSL versioning is based on Semantic Versioning model. Version has a format
MAJOR.MINOR.PATCH and is being defined in dsl_version field of
fuel_ccp/__init__.py module. Each service definition contains
dsl_version field with the version of DSL it was implemented/updated for.

During the validation phase of ccp deploy those versions will be
compared according to the following rules:

	if DSL version of fuel-ccp is less than service’s DSL version -
they are incompatible - error will be printed, deployment will be
aborted;

	if MAJOR parts of these versions are different - they are incompatible
- error will be printed, deployment will be aborted;

	otherwise they are compatible and deployment can be continued.

For dsl_version in fuel-ccp repository you should increment:

	MAJOR version when you make incompatible changes in DSL;

	MINOR version when you make backward-compatible changes in DSL;

	PATCH version when you make fixes that do not change DSL, but affect
processing flow.

If you made a change in service definition that is not supposed to work with
the current `dsl_version`, you should bump it to the minimal appropriate
number.

 Debugging microservice/application

Debugging microservice/application

This part of the documentation contains some practice recommendations, which
can be used for debugging some issues in service code.

Problem description

Workable service is perfect, but sometimes user may be in situation, when
application does not work as expected or fails with some unknown status.
Obviously if service can not provide clear traceback or logs, there is no
another option except debug this service. Let’s take a look on some useful
how to do it and use heat-engine service as example.

How to debug

	Create a local copy of the source code related project.

cd /tmp
git clone http://github.com/openstack/heat

	Do all necessary changes, i.e. add breakpoint and etc., in this source code.

	Update global configuration file by using local source for heat service.

sources:
 openstack/heat:
 source_dir: /tmp/heat

	Build new image and re-deploy heat service:

ccp build -c heat-engine
ccp deploy -c heat-engine

	Login in container and enjoy debugging.

Note

This approach is really pure for understanding, but has one issue.
If you want to change code again you need to repeat all operations
from building image again.

Another way to debug

The idea is to run new process with necessary changes in code (breakpoints)
inside already created container for current service. Execute
follow commands to run bash in container with heat-engine service:

kubectl get pods | grep heat-engine
kubectl exec -it <id of pod from previous command> bash

So now bash is run in container. There are two new issues here:

	It’s not possible to change service source files, because we are logged
as heat user.

	If heat-engine process be killed, Kubernetes detect it and re-create
container.

Both issues can be solved by changing Docker image and Service definition.

	First of all change user heat used in container to root. It should be
done in file: fuel-ccp-heat/docker/heat-engine/Dockerfile.j2.

Note

There is also alternative way to obtain root access is container:

	find node where pod with heat-engine was run

kubectl get pods -o wide | grep heat-engine

	ssh to this node with heat-engine pod

	find id of container with heat-engine and run bash as root user

docker ps | grep heat-engine
docker exec -it -u root <heat-container-id> bash

	The next step is to change run command in service definition:
fuel-ccp-heat/service/heat-engine.yaml. Find key word command,
comment it and write follow code:

command: sleep 1h

It will allow to run container for 1 hour without real heat-engine process,
it’s usually enough for leisurely debugging.

To ship new container to the CCP is necessary to build new image and then
re-deploy it:

ccp build -c heat-engine
ccp deploy -c heat-engine

When re-deploy is finished, run bash in new container again.
The source code is placed in follow directory:

/var/lib/microservices/venv/lib/python2.7/site-packages/

Change it by adding necessary breakpoints.

Note

Text editor vim can work incorrect from container. For fixing it
try to execute command: export TERM=xterm

The last step is to run updated service code. Execute command, which was
commented in service definition file, in the current example it’s:

heat-engine --config-file /etc/heat/heat.conf

Now patched service is active and can be used for debugging.

 Diagnostic snapshot

Diagnostic snapshot

In fuel-ccp/tools directory you can find tool called diagnostic-snapshot.sh. This tool helps to collect some debug data about your environment. You can run it with:

./tools/diagnostic_snapshot -n <namespace> -o <output_dir> -c <ccp_config>

parameters

	Short option
	Long option
	Description

	-n
	–namespace
	deployment namespace

	-o
	–output-dir
	directory where diagnostic snapshot will be saved

	-c
	–config
	should point to Fuel-ccp config file

	-h
	–help
	print help

This tool collect some basic data about:

	k8s objects in kube-system and ccp namespaces:
	pods

	services

	jobs

	kubelet logs

	system:
	diskspace

	network configuration

	cpu info/load

	sysctl info

	docker:
	logs

	list of images

	running containers

	stats

	ccp:
	status output

This script automatically create directory provided as parameter for -o option and archive file in it with all collected data. The name of this file is created with template: <datetime>-diagnostic.tar.gz

 Clusters On Kubernetes

Clusters On Kubernetes

This document describes an architecture of Galera and RabbitMQ Clusters
running in containers within Kubernetes pods and how to setup those in
OpenStack on top of Kubernetes from deployment and networking
standpoints. In addition to it, this document includes overview of
alternative solutions for implementing database and message queue for
OpenStack.

RabbitMQ Architecture with K8s

Clustering

The prerequisite for High Availability of queue server is the configured
and working RabbitMQ cluster. All data/state required for the operation
of a RabbitMQ cluster is replicated across all nodes. An exception to
this are message queues, which by default reside on one node, though
they are visible and reachable from all nodes. [1]

Cluster assembly requires installing and using a clustering plugin on
all servers. The following choices are considered in this document:

	rabbitmq-autocluster [https://github.com/aweber/rabbitmq-autocluster]

	rabbitmq-clusterer [https://github.com/rabbitmq/rabbitmq-clusterer]

rabbit-autocluster

Note that the plugin ‘rabbitmq-autocluster’ has unresolved
issue [https://github.com/aweber/rabbitmq-autocluster/issues/73]
that can cause split-brain condition to pass unnoticed by RabbitMQ
cluster. This issue must be resolved before this plugin can be
considered production ready.

The RabbitMQ cluster also needs proper fencing mechanism to exclude
split brain conditions and preserve a quorum. Proposed solution for this
problem is using ‘pause_minority’ partition
mode [https://www.rabbitmq.com/partitions.html] with the
rabbit-autocluster plugin, once the
issue [https://www.google.com/url?q=https://github.com/aweber/rabbitmq-autocluster/issues/73&sa=D&ust=1470686640249000&usg=AFQjCNG0W3j1LOtbiKaiwc7Qtp-DQYCbfQ]
with silent split brain is resolved. See the following link for the
proof of concept implementation of the K8s driven RabbitMQ cluster:
https://review.openstack.org/#/c/345326/.

rabbit-clusterer

Plugin ‘rabbitmq-clusterer’ employs more opinionated and less
generalized approach to the cluster assembly solution. It is also cannot
be directly integrated with etcd and other K8s configuration management
mechanisms because of static
configuration [https://github.com/rabbitmq/rabbitmq-clusterer/blob/master/README.md#cluster-configuration].
Additional engineering effort required to implement configuration
middleware. Because of that it is considered a fallback solution.

Replication

Replication mechanism for RabbitMQ queues is known as ‘mirroring’. By
default, queues within a RabbitMQ cluster are located on a single node
(the node on which they were first declared). This is in contrast to
exchanges and bindings, which can always be considered to be on all
nodes. Queues can optionally be made mirrored across multiple nodes.
Each mirrored queue consists of one master and one or more slaves, with
the oldest slave being promoted to the new master if the old master
disappears for any reason. [2]

Messages published to the queue are replicated to all members of the
cluster. Consumers are connected to the master regardless of which node
they connect to, with slave nodes dropping messages that have been
acknowledged at the master. Queue mirroring therefore aims to enhance
availability, but does not distribute load across nodes (all
participating nodes each do all the work). It is important to note that
using mirroring in RabbitMQ actually reduces the availability of queues
by dropping performance by about 2 times in performance
tests [http://docs.openstack.org/developer/performance-docs/test_results/mq/rabbitmq/index.html].
See below for the list of issues identified in the RabbitMQ mirroring
implementation. [6-13]

There are two main types of messages in OpenStack:

	Remote Procedure Call messages carry commands and/or requests between
microservices within a single component of OpenStack platform
(e.g. nova-conductor to nova-compute).

	Notification messages are issued by a microservice upon specific
events and are consumed by other components (e.g. Nova
notifications about creating VMs are consumed by Ceilometer).

In proposed OpenStack architecture, only notification queues are
mirrored as they require durability and should survive a failure of any
single node in the cluster. All other queues are not, and if the
instance of RabbitMQ server that hosts a particular queue fails after a
message sent to that queue, but before it is read, that message is gone
forever. This is a trade-off for significant (2 times) performance boost
in potential bottleneck service. Potential drawbacks of this mode of
operation are:

	Long-running tasks might stuck in transition states due to loss of
messages. For example, Heat stacks might never leave spawning
state. Most of the time, such conditions could be fixed by the
user via API.

Data Persistence

OpenStack does not impose requirements for durable queues or messages.
Thus, no durability required for RabbitMQ queues, and there is no ‘disk’
nodes in cluster. Restarting a RabbitMQ node then will cause all data of
that node to be lost, both for RPC and Notification messages.

	RPC messages are not supposed to be guaranteed, thus no persistence is
needed for them.

	Notifications will be preserved by mirroring if single RabbitMQ node
fails (see above).

Networking Considerations

RabbitMQ nodes address each other using domain names, either short or
fully-qualified (FQDNs). Therefore hostnames of all cluster members must
be resolvable from all cluster nodes, as well as machines on which
command line tools such as rabbitmqctl might be used.

RabbitMQ clustering has several modes of dealing with network
partitions [https://www.rabbitmq.com/partitions.html], primarily
consistency oriented. Clustering is meant to be used across LAN. It is
not recommended to run clusters that span WAN. The
Shovel [https://www.rabbitmq.com/shovel.html] or
Federation [https://www.rabbitmq.com/federation.html] plugins are
better solutions for connecting brokers across a WAN. Note that Shovel
and Federation are not equivalent to
clustering [https://www.rabbitmq.com/distributed.html]. [1]

Kubernetes Integration

Clustering plugins need configuration data about other nodes in the
cluster. This data might be passed via etcd to RabbitMQ startup scripts.
ConfigMaps are used to pass the data into containers by Kubernetes
orchestration.

The RabbitMQ server pods shall be configured as a DaemonSet with
corresponding service. Physical nodes shall be labelled so as to run the
containers with RabbitMQ on dedicated nodes, one pod per node (as per
DaemonSet), or co-located with other control plane services.

PetSets are not required to facilitate the RabbitMQ cluster as the
servers are stateless, as described above.

Proposed solution for running RabbitMQ cluster under Kubernetes is a
DaemonSet [http://kubernetes.io/docs/admin/daemons/] with node
labels to specify which nodes will run RabbitMQ servers. This will allow
to move the cluster onto a set of dedicated nodes, if necessary, or run
them on the same nodes as the other control plane components.

Alternatives

ZeroMQ

This library provides direct exchange of messages between microservices.
Its architecture may include simple brokers or proxies that just relay
messages to endpoints, thus reducing the number of network connections.

ZeroMQ library support was present in OpenStack since early releases.
However, the implementation assumed direct connections between services
and thus a full mesh network between all nodes. This architecture
doesn’t scale well. More recent
implementations [http://www.slideshare.net/AlexeyZamiatin/zmq-driver-mitaka-summit]
introduce simple proxy services on every host that aggregate messages
and relay them to a central proxy, which does host-based routing.

Benchmarks
show [http://lists.openstack.org/pipermail/openstack-dev/2016-March/090451.html]
that both direct and proxy-based ZeroMQ implementations are more
efficient than RabbitMQ in terms of throughput and latency. However, in
the direct implementation, quick exhaustion of network connections limit
occurs at scale.

The major down side of the ZeroMQ-based solution is that the queues
don’t have any persistence. This is acceptable for RPC messaging, but
Notifications require durable queues. Thus, if RPC is using ZeroMQ, the
Telemetry will require a separate messaging transport (RabbitMQ or
Kafka).

Demo Recording

The following
recording [https://drive.google.com/a/mirantis.com/file/d/0B7MjNOom54uYemc5VndNckwteGc/view]
demonstrates how RabbitMQ cluster works as a DaemonSet on K8s version
1.3 with rabbit-autocluster plugin.

Galera Architecture with K8s

Galera is synchronous multi-master database cluster, based on
synchronous replication. At a high level, Galera Cluster consists on
database server that uses Galera Replication plugin to manage
replication. Through the wsrep API, Galera Cluster provides
certification-based replication. A transaction for replication, the
write-set, not only contains the database rows to replicate, but also
includes information on all the locks that were held by the database
during the transaction. Each node then certifies the replicated
write-set against other write-sets in the applier queue. The write-set
is then applied, if there are no conflicting locks. At this point, the
transaction is considered committed, after which each node continues to
apply it to the tablespace. This approach is also called virtually
synchronous replication, given that while it is logically synchronous,
the actual writing and committing to the tablespace happens
independently, and thus asynchronously on each node.

How Galera Cluster works

The primary focus is data consistency. The transactions are either
applied to every node or not all. In a typical instance of a Galera
Cluster, applications can write to any node in the cluster and
transaction commits, (RBR events), are then applied to all the servers,
through certification-based replication. Certification-based replication
is an alternative approach to synchronous database replication, using
group communication and transaction ordering techniques. In case of
transaction collisions the application should be able to handle ‘failed’
transactions. Openstack Applications use oslo.db which has retry
logic [https://github.com/openstack/oslo.db/blob/master/oslo_db/api.py#L85]
to rerun failed transaction.

Starting the cluster

By default, nodes do not start as part of the Primary Component (PC).
Instead, they assume that the Primary Component exists already somewhere
in the cluster.

When nodes start, they attempt to establish network connectivity with
the other nodes in the cluster. For each node they find, they check
whether or not it is a part of the Primary Component. When they find the
Primary Component, they request a state transfer to bring the local
database into sync with the cluster. If they cannot find the Primary
Component, they remain in a nonoperational state.

There is no Primary Component when the cluster starts. In order to
initialize it, you need to explicitly tell one node to do so with the
–wsrep-new-cluster argument. By convention, the node you use to
initialize the Primary Component is called the first node, given that it
is the first that becomes operational.

When cluster is empty, any node can serve as the first node, since all
databases are empty. In case of failure (power failure) the node with
the most recent data should initialize Primary Component.

Node Provisioning

There are two methods available in Galera Cluster to provision nodes:

	State Snapshot Transfer (SST) where a snapshot of entire node state
is transferred

	Incremental State Transfer (IST) where only missing data transactions
are replayed

In SST, the cluster provisions nodes by transferring a full data copy
from one node to another. When a new node joins or when it was offline
(or left behind cluster) longer than IST buffer a new node (JOINER)
initiates a SST to synchronize data.

In IST, the cluster provisions a node by identifying the missing
transactions on the JOINER to send them only, instead of transferring
entire state.

Networking Considerations

Load Balancing is a key element of networking configuration of the
Galera cluster. Load balancer must be coordinated with the cluster, in
terms that it redirect write requests to appropriate Galera Pod which
has Sync state. Communication with Galera Pods that have any other state
(OPEN, PRIMARY, JOINER, JOINED, DONOR) should be prohibited. Load
Balancer also ensures failover to hot stand-by instances and fencing of
failed active nodes.

The following options are considered for load balancer in K8s
integration of Galera:

	Kubernetes Load Balancing

	HAProxy [http://www.haproxy.org]

	ProxySQL [http://www.proxysql.com/]

Storage Considerations

Since every nodes in Galera Cluster has a copy of the data set at any
time, there is no need to use networked storage (NFS, Ceph, GlasterFS).
All Galera Pods can work with the local disk storage (Directory, LVM).
From the Kubernetes standpoint, it means that local persistent volume
must be mounted to Galera Pod on the same node. From the Kubernetes
Scheduler standpoint, it means that Galera Pods should run on the nodes
where Persistent Volume is created. At the same time, networking storage
might be useful as in that case PV claimed on it can be assigned to any
node eliminating bottleneck in Architecture. Using networking storage
such as ceph might significantly
improve [https://www.percona.com/blog/2016/08/04/percona-xtradb-cluster-on-ceph/]
SST operation though database write operations will be slower than local
storage.

The following clustering solutions considered for Galera Cluster:

	Replication Controller with proxy (ProxySQL is used):
An etcd cluster with startup scripts controlling assembly and
liveliness of the cluster’s nodes, for example:
	https://github.com/percona/percona-docker/tree/master/pxc-56

	https://github.com/Percona-Lab/percona-xtradb-cluster-docker

	PetSet:
	https://github.com/kubernetes/contrib/blob/master/pets/mysql/galera/mysql-galera.yaml

	Replication controller with proxy and additional watcher
	https://review.openstack.org/367650

Replication Controller Schema with additional proxy and watcher

The proposed solution is based on the native Kubernetes state management
with etcd providing distributed monitoring and data exchange for the
cluster. Cluster operations will be triggered by Kubernetes events and
handled by custom scripts.

Failover and fencing of failed instances of Galera Cluster is provided
by scripts triggered by Kubernetes upon the changes in state and
availability of the members of Galera Cluster. State and configuration
information is provided by etcd cluster.

[image: image0]

	Proposed architecture allows to quickly replace failing instances of
MySQL server without need to run full replication. It is still
necessary to restore the pool of hot-stand-by instances whenever
the failover event occurs.

	Additional proxy is stateless, e.g. it does not contain state and can
be re-scheduled by k8s in case of failure

	Watcher is stateless as well, and is capable of populating the state
from etcd to ProxySQL

	Additional proxy brings the benefit of more granular control over
MySQL connections, which is not possible with k8s service:
	Forward all writes to one node or special group of nodes (not
implemented in current scheme, but can be easily added), and
Reads to the rest of the group;

	Central mysql cache;

	Rate limits on per-user basis;

	Hot-standby nodes can be added to the pool but not activated by
default

	Storage considerations are the same as for PetSets, see below.

Future enhancements of this PoC may include:

	Rework custom bootstrap script and switch to election
plugin [https://github.com/kubernetes/contrib/tree/master/election]
for K8s.

	Integrate extended Galera checker that supports hostgroups (like
this
one [https://github.com/Tusamarco/proxy_sql_tools/blob/master/galera_check.pl])

Demo Recording

The following
recording [https://asciinema.org/a/c5gofuw20rxpsux8029vuv8xw]
demonstrates how Galera cluster works as a Replication Controller on K8s
1.3 with ProxySQL middleware. It includes destructive test when one of
instances of MySQL server in the cluster is shut off.

Open Questions

	ProxySQL requires management, and that is why watcher was written.
Since it terminates queries, users/password should be managed in
two places now: in MySQL and in ProxySQL itself.

	K8s does not have bare-metal storage provider (only cloud based
ones), and it is crucial for any stateful application in
self-hosted clouds. Until that is ready, no stateful application
can actually go production.

PetSet Schema

Storage for database files shall be supported as one of the following
options:

	a local file/LV configured as al
HostPath [http://kubernetes.io/docs/user-guide/volumes/#hostpath]
volume and mounted to every pod in set;

	a remote SAN/NAS volume mounted to every pod;

	a volume or file on a shared storage (Ceph) configured as volume and
mounted to every pod.

Persistent volumes for Galera PetSets must be created by the K8s
installer, which is out of scope of this document.

Demo Recording

The following video recording <https://asciinema.org/a/87411>
demonstrates how Galera MySQL cluster is
installed and works as PetSet on Kubernetes with local volumes
for persistent storage.

Galera Cluster Rebuild Problem

In case of general cluster failure or planned maintenance shutdown, all
pods in Galera cluster are destroyed. When the new set of pods is
started, they have to recover the cluster status, rebuild the cluster
and continue from the last recorded point in time.

With local storage, Galera pods mount volumes created as a directory
(default) or LVM volume (WIP). These volumes are used to store database
files and replication logs. If cluster has to be rebuilt, all pods are
assumed to be deleted, however, the volumes should stay and must be
reused in the rebuild process. With local non-mobile volumes it means
that new pods must be provisioned to the very same nodes they were
running on originally.

Another problem is that during the rebuild process it is important to
verify integrity and consistency of data on all static volumes before
assembling the cluster and select a Primary Component. There are
following criteria for this selection:

	The data must be readable, consistent and not corrupted.

	The most recent data set should be selected so the data loss is
minimal and it could be used to incrementally update other nodes
in the cluster via IST.

Currently, k8s scheduler does not allow for precise node-level placement
of pods. It is also impossible to specify affinity of a pod to specific
persistent local volume. Finally, k8s does not support LVM volumes out
of the box.

References

This section contains references to external documents used in
preparation of this document.

	RabbitMQ Clustering [https://www.rabbitmq.com/clustering.html]

	RabbitMQ High Availability [https://www.rabbitmq.com/ha.html]

	https://github.com/percona/percona-docker/tree/master/pxc-56

	https://github.com/Percona-Lab/percona-xtradb-cluster-docker

	http://docs.openstack.org/developer/performance-docs/test_results/mq/rabbitmq/index.html

	https://github.com/rabbitmq/rabbitmq-server/issues/802

	https://github.com/rabbitmq/rabbitmq-server/issues/803

	https://github.com/rabbitmq/rabbitmq-server/pull/748

	https://github.com/rabbitmq/rabbitmq-server/issues/616

	https://github.com/rabbitmq/rabbitmq-server/pull/535

	https://github.com/rabbitmq/rabbitmq-server/issues/368

	https://github.com/rabbitmq/rabbitmq-server/pull/466

	https://github.com/rabbitmq/rabbitmq-server/pull/431

 OpenStack Compute node / VMs on K8s

OpenStack Compute node / VMs on K8s

This document describes approaches for implementing OpenStack Compute node
and running VMs on top of K8s from the prospective of “Hypervisor Pod”. It
includes overview of currently selected approach, future steps and alternative
solutions.

Potential solutions

This section consists of a list of potential solutions for implementing
OpenStack VMs on topc K8s. This solutions the case when Neutron ML2 OVS
used for OpenStack networking. Pros and Cons listed for each solution.
Not all possible solutions (with all combinations of pod-container topologies)
listed here, only part that makes sense or needed to show transition from
bad to good options.

1. Everything in one pod

Pods and containers

Hypervisor / Compute / Networking Pod:

	QEMU / KVM / Libvirt

	OVS DB

	OVS vswitchd

	nova-compute

	neutron-ovs-agent

Pros & cons

Pros:

	One pod will represent the whole OpenStack compute node (very minor
advantage)

Cons:

	It’s impossible to make upgrade of any service without killing virtual
machines

	All containers will have the same characteristics such as net=host, user,
volumes and etc.

2. Libvirt and VMs baremetal, OpenStack part in one pod

Pods and containers

Baremetal (not in containers):

1. QEMU / KVM / Libvirt
4. OVS (DB and vswitchd)

Compute / Networking Pod:

	nova-compute

	neutron-ovs-agent

Pros & cons

Pros:

	Restart of docker and docker containers will not affect running VMs as
libvirt running on baremetal

	Docker and docker containers downtime will not affect networking as OVS
running on host, only new rules will not be passed to the host

Cons:

	External orchestration required to for managing Libvirt on baremetal,
especially for upgrades

	It’s impossible to update nova without neutron and vice versa.

3. Libvirt and VMs baremetal, pod per OpenStack process

Pods and containers

Baremetal (not in containers):

	QEMU / KVM / Libvirt

	OVS DB / vswitchd

Compute Pod:

	nova-compute

Networking Pod:

	neutron-ovs-agent

Pros & cons

Same as option number 3, but it’s possible to upgrade nova and neutron
separately.

4. Libvirt and VMs in one pod, pod per OpenStack service

Notes

It’s a primary approach and it’s currently implemented in Fuel CCP. Libvirt
upgrade in such case could only be done by evacuating virtual machines from
the host first, but, for example, nova-compute could be upgraded in place.

Pods and containers

Hypervisor pod:

	QEMU / KVM / Libvirt

OVS DB pod:

	OVS DB

OVS vswitchd pod:

	OVS vswitchd

Compute Pod:

	nova-compute

Networking pod:

	neutron-ovs-agent

Pros & cons

Pros:

	No external orchestration required for compute node provisioning

	All OpenStack parts and dependencies are managed through K8s in such case,
so it’s possible to upgrade any service including libvirt, nova, neutron and
ovs without external orchestration, just through the K8s API

Cons:

	Docker or docker containers downtime will affect running VMs or networking

5. Libvirt in pod w/ host pid, pod per OpenStack service, VMs outside of containers

Notes

It’s a “next step” approach based on Pros & Cond. It should be investigated
in details and stability should be verified. If there will be no issues than
it should become regerence approach of OPenStack VMs deployment on K8s.
Potentially, another level of improvements needed to avoid affecting networking
when docker or docker containers restarted.

Pods and containers

Hypervisor pod:

	QEMU / KVM / Libvirt (using host pid)

OVS DB pod:

	OVS DB

OVS vswitchd pod:

	OVS vswitchd

Compute Pod:

	nova-compute

Networking pod:

	neutron-ovs-agent

Pros & cons

Same as option number 4, but improved to not affect virtual machines when
docker or docker containers restart.

Conclusion

Option number 4 is currently selected as implementation design for Fuel CCP,
while as end goal we’d like to achieve approach where restarting docker and
docker containers will not affect running virtual machines. In future, we’ll
need to evaluate additional improvements to guarantee that K8s and docker
downtime doesn’t affect running VMs.

 OpenStack Reference Architecture For 100, 300 and 500 Nodes

OpenStack Reference Architecture For 100, 300 and 500 Nodes

This document proposes a new Reference Architecture (RA) of OpenStack
installation on top of Kubernetes that supports a number of 100, 300 and 500
compute nodes, using container technologies to improve scalability and
high availability of OpenStack Control Plane services. Containerization
of OpenStack components will also enable provisioning, patching and
upgrading large numbers of nodes in parallel, with high reliability and
minimal downtime.

Introduction/Executive Summary

This document contains recommendations for building specific clouds
depending for different use cases. All recommendations are validated and
tested on the described scale in both synthetic and real-world
configurations.

The proposed Reference Architecture applies the following open source
tools (among others):

	OpenStack Control Plane is a scalable, modular cloud controller with
support for all aspects of virtualized infrastructure.

	Ceph is a distributed storage system that provides all the most
popular types of storage to a virtualized infrastructure: object
storage, virtual block storage and distributed file system.

	InfluxDB is a time-series database optimized for collecting metrics
from multiple sources in nearly-real time and providing access to
recorded metrics.

	Docker containers are used to isolate OpenStack services from the
underlying operating system and control the state of every
service more precisely.

Highlights

Highlights of this document include:

	Hardware and network configuration of the lab used to develop the
Reference Architecture.

	OpenStack Control Plane overview - Details how the OpenStack Control
Plane is organized, including placement of the services for
scaling and high availability of the control plane.

	Data plane overview - Describes the approach to the data plane and
technology stack used in the Reference Architecture.

	Granular update and upgrade overview - Describes how the proposed
Reference Architecture supports updating and upgrading on all
levels from individual services to the whole OpenStack
application.

Overview

Hardware and network considerations

This section summarizes hardware considerations and network layouts for
the proposed solution. It defines the basic requirements to server
equipment hosting the cloud based on the CCP RA. Requirements to network
infrastructure in terms of L2 and L3 topologies, services like DNS and
NTP and external access provided in the network.

OpenStack Control Plane

The Control Plane consists of OpenStack component services, like Nova,
Glance and Keystone, and supplementary services like MySQL database
server and RabbitMQ server, all enveloped in Docker containers and
managed by an orchestrator (e.g. Kubernetes).

OpenStack Data Plane

OpenStack data plane is constituted by backends to various drivers of
different components of OpenStack. They all fall into 3 main categories:

	Hypervisor is data plane component backing OpenStack Compute (Nova),
for example, libvirt or VMWare vSphere.

	Networking is multiple data plane components under management of
OpenStack Networking, for example, OpenVSwitch.

	Storage has multiple components managed by OpenStack Storage and
Images services. This category includes such systems as LVM,
iSCSI, Ceph and others.

Granular Life Cycle Management, Updates and Upgrades

This document describes the strategy of updating the OpenStack cloud and
its components to new version. The strategy of upgrade is based on
containerization of all those components. Containers effectively split
the state of the system into set of states of individual container.
Every container’s state is managed mostly independently.

Hardware Overview

Server Hardware Specifications

The following server hardware was used in a lab to install and test the
proposed architecture solution. For Compute nodes, two configurations
are used.

Configuration One

	Server model is Dell R630

	2x12 Core CPUs E5-2680v3

	256GB of RAM

	2x800GB SSD Intel S3610

	2x10GB Intel X710 dual-port NICs

Configuration Two

	Server model is Lenovo RD550-1U

	2x12 Core CPUs E5-2680v3

	256GB of RAM

	2x800GB SSD Intel S3610

	2x10GB Intel X710 dual-port NICs

For Storage nodes, the following configuration is used.

	Server model is Lenovo RD650

	2x12 Core CPUs E5-2670v3

	128GB RAM

	2x480GB SSD Intel S3610

	10x2TB HDD

	2x10GB Intel X710 dual-port NICs

Resource Quantities

Compute/Controller Resources

The number of Compute/Controller nodes in the environment: 100 nodes

The number of CPU Cores available to hypervisors and control plane
services: 2400 cores

The amount of RAM available to hypervisors and control plane services:
25,600 GB

Storage Resources

	The number of Storage nodes in the environment: 45 nodes

	The number of CPU Cores available to storage services: 1,080 cores

	The amount of RAM available to storage cache: 5,760 GB

	The total size of raw disk space available on storage nodes: 900 TB

Servers are installed in 9 racks connected by ToR switches to spine
switches.

Network Schema

Underlay Network Topology

The environment employs leaf switches topology in the underlay network.
BGP protocol used in the underlay network to ensure multipath links
aggregation (IP ECMP) to leaf switches. ToR leaf switches are connected
to spines with 40GbE uplinks.

The leaf switches use VXLANs to provide overlay network to servers, and
MLAG aggregation to ensure availability and performance on the
downstream links. Servers are connected to ToR switches with 40GbE
port-channel links (4x10GbE with MLAG aggregation).

The following diagram depicts the network schema of the environment:

[image: image0]

No specific QoS configuration was made in the underlay network. Assume
that all services share the total bandwidth of network link without
guarantees for individual processes or sockets.

The following models of switching hardware were used throughout testing
effort in the schema described above:

	Spine switches: Arista 7508E (4x2900PS, 6xFabric-E modules,
1xSupervisorE module)

	ToR switches: Arista 7050X

Network for OpenStack Platform

OpenStack platform uses underlay network to exchange data between its
components, expose public API endpoints and transport the data of
overlay or tenant networks. The following classes of networks are
defined for OpenStack platform in proposed architecture.

	Management network. This is the network where sensitive data exchange
happens. Sensitive data includes authentication and authorization
credentials and tokens, database traffic, RPC messages and
notifications. This network also provides access to
administrative API endpoints exposed by components of the
platform.

	
	Public network. Network of this class provides access to API

	endpoints exposed by various components of the platform. It also
connects Floating IPs of virtual server instances to external
network segments and Internet.

	Storage network. Specialized network to transport data of storage
subsystem, i.e. Ceph cluster. It also connects to internal Ceph
API endpoints.

	Overlay network. Networks of this class transport the payload of
tenant networks, i.e. the private networks connecting virtual
server instances. The current architecture employs VXLANs for L2
encapsulation.

There can be one or more networks of each class in a particular cloud,
for example, Management network class can include separate segments for
messaging, database traffic and Admin API endpoints, and so on.

In addition to role segmentation, networks in one class can be separated
by scale. For example, Public network class might include multiple
per-rack segments, all connected by an L3 router.

[image: image1]

Control Plane

OpenStack Overview

OpenStack is a system that provides Infrastructure as a Service (IaaS).
IaaS is essentially a set of APIs that allow for creation of elements of
typical data center infrastructure, such as virtual servers, networks,
virtual disks and so on. Every aspect of an infrastructure is controlled
by a particular component of OpenStack:

	OpenStack Compute (Nova) controls virtual servers lifecycle, from
creation through management to termination.

	OpenStack Networking (Neutron) provides connectivity between virtual
servers and to the world outside.

	OpenStack Image (Glance) holds base disk images used to boot the
instances of virtual servers with an operating system contained
in the image.

	OpenStack Block Storage (Cinder) manages the virtual block storage
and supplies it to virtual servers as block devices.

	OpenStack Identity (Keystone) provides authentication/authorization
to other components and clients of all APIs.

Guidelines for OpenStack at Scale

Currently, OpenStack scalability is limited by several factors:

	Placement responsiveness desired

	MySQL scalability

	Messaging system scalability

	Scalability of the SDN

	Scalability of the SDS

Scheduler Scalability

In general, the scheduling strategy for OpenStack is a completely
optimistic determination which means the state of all things is
considered whenever a placement decision is made. As more factors are
added to the consideration set (special hardware, more compute nodes,
affinity, etc.) the time to place resources increases at a quadratic
rate. There is work being done on splitting out the scheduling and
placement parts of Nova and isolating them as a separate service, like
Cinder or Neutron. For now, however, this is a work in progress and we
should not rely on increased scheduler performance for another few
releases.

OpenStack can seamlessly accommodate different server types based on
CPU, memory and local disk without partitioning of the server pool.
Several partitioning schemes exist that provide ability to specify pools
of servers appropriate for a particular workload type. A commonly used
scheme is server aggregates, which allows specific image sets to be
scheduled to a set of servers based on server and image tags that the
administrator has defined.

MySQL Scalability

As almost all OpenStack services use MySQL to track state, scalability
of the database can become a problem. Mirantis OpenStack deploys with a
MySQL + Galera cluster which allows for reads and writes to be scaled in
a limited fashion.

However, careful tuning and care of the
databases is a very important consideration. MySQL is recommended to run
on dedicated nodes. The Control Plane DB should not be used by Tenant
Applications or other solutions like Zabbix; those should provision
another MySQL cluster on other physical nodes.

Messaging System Scalability

A majority of OpenStack services use AMQP implementations (RabbitMQ and
Qpid) for message transport and RPC. As with MySQL, there are examples
of installations in the wild which have successfully scaled this
messaging infrastructure to tens of thousands of nodes.

Services Overview

The following paragraphs describe how the individual services and
components should be placed and configured in the proposed Reference
Architecture. All services are divided into two categories: stateless
and stateful. Each category requires specific approach which is outlined
below.

Stateless Services

Services of this type do not record their state in their environment.
Those services can be killed and restarted without risk of losing data.
Most of OpenStack component services are inherently stateless being
either HTTP-based API servers or message queue processors.

General approach to stateless services is envelop the service into
Docker container with minimal to no configuration embedded.

Stateful Services

Services that keep track of their state in some persistent storage and
cannot be restarted in clean environment without losing that state are
considered stateful. The main stateful component of the OpenStack
platform is MySQL state database. Most of other services rely on the
database to keep track of their own state.

Containers that run stateful services must have persistent storage
attached to them. This storage must be made available in case if the
container with stateful service should be move to another location. Such
availability can be ensured on application level via replication of some
sort, or on network level by redirecting connections from moving
container to the same storage location.

OpenStack Identity (Keystone)

Keystone service provides identity to all other OpenStack services and
external clients of OpenStack APIs. The main component of Identity
service is an HTTP server that exposes an API of the service.

Keystone service is used by all other components of OpenStack for
authorization of requests, including system requests between services
and thus gets called a lot even if the platform is idle. This generates
load on CPU resources of server where it runs. Thus, it is recommended
to run Keystone service on dedicated node, althhough they could be
co-located with other resource intensive components.

For availability and load distribution it is recommended to run at least
3 instances of Keystone at the scale of 100 and 300 nodes. For scale
of 500 nodes, 5 instances of Keystone server are recommended.

Load balancer with a Virtual IP address should be placed in front
of the Keystone services to ensure handling of failures and even
distribution of requests.

Per these recommendations, the recommended number of dedicated physical
nodes to run Keystone service is 3 or 5. However, instances of Keystone
can share these nodes with any other services.

Apache2 Web Server

Apache web server wraps Keystone and Horizon services and exposes them
as web services. However, since Horizon can generate significant load
on resources, it is not recommended to co-locate it with Keystone, but
it is possible at scale of 100 to 500 nodes. See below for recommendations
on scaling Horizon.

[image: image2]

OpenStack Compute (Nova)

Nova has multiple services, not all of which are stateless. API server,
scheduler and conductor in particular are stateless, while nova-compute
service is not as it manages the state of data-plane components on a
compute node.

Nova API

Web server that exposes Compute API of the OpenStack platform. This is a
stateless service. Nova API server consumes significant resources at
scale of hundreds of nodes.

Nova API server should run on a dedicated physical servers to ensure it
does not share resources with other services with comparably big
footprint. It can co-locate with more lightweight services.

For availability reasons, it is recommended to run at least 3 instances
of API server at any time. Load balancer with Virtual IP address shall
be placed in front of all API servers.

[image: image3]

Nova Scheduler

Scheduling service of Nova is stateless and can be co-located with
services that have larger footprint. Scheduler should be scaled by
adding more service instances. Every scheduler instance must run
with at least 3 worker threads.

Using multiple scheduler processes might lead to unexpected
delays in provisioning due to scheduler retries if many simultaneous
placement requests are being served.

At the scale of 100 and 300 of nodes, 3 instances of Scheduler will
suffice. For 500 nodes, 5 instances recommended.

Since they can be co-located with other services, it won’t take any
additional physical servers from the pool. Schedulers can be placed to
nodes running other Nova control plane services (i.e. API and
Conductor).

Nova Conductor

Centralized conductor service in Nova adds database interface layer
for improved security and complex operations. It is a stateless service
that is scaled horizontally by adding instances of it running on different
physical servers.

To ensure that the Conductor service is highly available, run 3
instances of the service at any time. This will not require dedicated
physical servers from the pool.

[image: image4]

Nova Compute

Compute service is essentially an agent service of Nova. An instance of
it runs on every hypervisor node in an OpenStack environment and
controls the virtual machines and other connected resources on a node
level.

Compute service in the proposed architecture is not containerized. It
runs on the same node as a hypervisor and communicates to different local
and remote APIs to get the virtual machines up and running. One instance
of Compute service runs per hypervisor host.

Services Placement

Nova control plane services is spread across 3 nodes with the following
services distributed evenly between those nodes:

	3 instances of Conductor service

	3 instances of API service

	3 to 5 instances of Scheduler service

Load balancer is placed in front of the API services to ensure
availability and load distribution for the Compute API of OpenStack
platform.

Compute services run per-node on hypervisor hosts (compute nodes) in
non-redundant fashion.

OpenStack Networking (Neutron)

This component includes API server that exposes HTTP-based API and a set
of agents which actually manage data plane resources, such as IP
addresses, firewall and virtual switches.

Neutron Server

An API server exposes Neutron API and passes all web service calls to
the Neutron plugin for processing. This service generates moderate load
on processors and memory of physical servers. In proposed architecture,
it runs on the same nodes as other lightweight API servers. A minimal of
3 instances of the server is recommended for redundancy and load
distribution.

Load balancer working in front of the API servers helps to ensure their
availability and distribute the flow of requests.

[image: image5]

Neutron DHCP agent

DHCP agent of Neutron is responsible for assigning IP addresses to VMs.
The agent is horizontally scalable by adding new instances of it
distributed between different nodes. DHCP agent can be co-located to any
other services and can run on hypervisor hosts as well.

Neutron L3 agent

L3 agent controls routing in Public and Private networks by creating and
managing namespaces, routers, floating IP addresses and network
translations. The agent can be scaled by adding instances. High
availability of the agent is ensured by running its instances in
Corosync/Pacemaker cluster or using orchestrator-driven clustering and
state tracking (e.g. Kubernetes events system with etcd).

The agent has low resources footprint and can be co-located with more
resource-intensive services, for example, Neutron Server.

Neutron L2 agent

L2 agent manages data link layer configuration of the overlay network
for Compute nodes. It also provides L2 functions to L3 agent. The agent
is specific to Neutron plugin.

The L2 agent used with OpenVSwitch plugin generates high CPU load when
creates and monitors the OVS configurations. It has to run on any host
that runs nova-compute, neutron-l3-agent or neutron-dhcp-agent.

Neutron metadata agent

The metadata agent provides network metadata to virtual servers.
For availability and redundancy, it is recommended to run at least 3
instances of the agent. They can share a node with other Neutron or
control plane services.

Services Placement

Neutron control plane services run in batches 3 for redundancy
of Neutron Server. All micro services of Neutron could be co-located
with the Neutron Servers or with other components’ services.

Load balancer should be placed in front of the Neutron Server to ensure
availability and load distribution for the Network API of the OpenStack
platform.

L3 and DHCP agents are co-located with instances of Neutron Server on
the same physical nodes. L2 agent works on every Compute node and on
every node that runs L3 and/or DHCP agent.

OpenStack Images (Glance)

Images service consists of API and indexing service. Both of them are
stateless and can be containerized.

Glance API

This service exposes Images API of OpenStack platform. It is used to
upload and download images and snapshot.

Glance API server has low resource consumption and can be co-located
with other services. It does not require dedicated physical servers.

Glance API server scales by adding new instances. Load balancer is
required to provide a single virtual address to access the API. The load
can be evenly distributed between instances of Glance API.

Important parameter of the Image Service architecture is the storage
backend. The following types of storage are proposed for Glance in this
Reference Architecture:

	Local filesystem

	Ceph cluster

With local storage, the consistency of the store for all instances of
Glance API must be ensured by an external component (e.g. replication
daemon).

Ceph backend natively provides availability and replication of stored
data. Multiple instances of Glance API service work with the same shared
store in Ceph cluster.

[image: image6]

Glance Registry

Registry serves images metadata part of the Images API. It stores and
manages a catalog of images. It has low footprint and can share a
physical node with other resource intensive services.

Services Placement

Micro services of Glance do not require dedicated physical servers. They
can be co-located with other services.

For the purposes of high availability and redundancy, at least 3
instances of Glance API service should run at any time. Load balancer
must be placed in front of those instances to provide single API
endpoint and distribute the load.

OpenStack Block Storage (Cinder)

Storage service manages and exposes a virtual block storage. The server
that handles the management of low-level storage requires access to the
disk subsystem.

Cinder API

This service exposes Volume API of the OpenStack platform. Volume API is
not very often used by other components of OpenStack and doesn’t consume
too much resources. It could run on the same physical node with other
resource non intensive services.

For availability and redundancy purposes, it is proposed to run at least
3 instances of Cinder API. Load balancer should be placed in front of
these instances to provide distribution of load and failover
capabilities.

[image: image7]

Cinder Scheduler

Scheduler selects an instance of the Volume micro service to call when a
client requests creation of a virtual block volume. Scheduler is not
resource intensive and can be co-located with other services. It scales
horizontally by adding new instances of the service. For redundancy
purposes, the instances of scheduler service should be distributed
between different physical servers.

Cinder Volume

Volume service manages block storage via appropriate API which depends
on the technology in use. With Ceph as a provider of virtual block
storage, single instance of Cinder Volume service is required to manage
the Ceph cluster via its API. If virtual block storage is provided by
using LVM with local disks of Compute nodes, the Volume service must be
running on every Compute node in the OpenStack environment.

In Ceph case, it is recommended to run at least 3 instances of the
Volume service for the availability and redundancy of the service. Each
virtual volume is managed by one instance Volume service at a time.
However, if that instance is lost, another one takes over on its
volumes.

[image: image8]

Services Placement

Cinder services do not require dedicated physical nodes. They run on the
same physical servers with other components of control plane of the
OpenStack platform.

The instances of Cinder API service are placed behind a load balancer to
ensure the distribution of load and availability of the service.

OpenStack Dashboard (Horizon)

Horizon dashboard provides user interface to the cloud’s provisioning
APIs. This is a web application running on top of Apache2 web server.
For availability purposes, multiple instances of the server are started.
Load balancer is placed in front of the instances to provide load
distribution and failover. Horizon does not require dedicated physical
node. It can be co-located with other services of other components of
the OpenStack platform.

For security reasons, it is not recommended to use the same instances
Apache2 server to wrap both Horizon and Keystone API services.

RabbitMQ

The messaging server allows all distributed components of an OpenStack
service to communicate to each other. Services use internal RPC for
communication. All OpenStack services also send broadcast notifications
via messaging queue bus.

Clustering

The prerequisite for High Availability of queue server is the configured
and working RabbitMQ cluster. All data/state required for the operation
of a RabbitMQ cluster is replicated across all nodes. An exception to
this are message queues, which by default reside on one node, though
they are visible and reachable from all nodes.

Cluster assembly requires installing and using a clustering plugin on
all servers. Proposed solution for RabbitMQ clustering is the
rabbitmq-autocluster [https://github.com/aweber/rabbitmq-autocluster]*plugin* [https://github.com/aweber/rabbitmq-autocluster].

The RabbitMQ cluster also needs proper fencing mechanism to exclude
split brain conditions and preserve a quorum. Proposed solution for this
problem is using ‘pause_minority’ partition
mode [https://www.rabbitmq.com/partitions.html] with the
rabbit-autocluster plugin.

Replication

Replication mechanism for RabbitMQ queues is known as ‘mirroring’. By
default, queues within a RabbitMQ cluster are located on a single node
(the node on which they were first declared). This is unlike exchanges
and bindings, which can always be considered to be on all nodes. Queues
can optionally be made mirrored across multiple nodes. Each mirrored
queue consists of one master and one or more slaves, with the oldest
slave being promoted to the new master if the old master disappears for
any reason.

Messages published to the queue are replicated to all members of the
cluster. Consumers are connected to the master regardless of which node
they connect to, with slave nodes dropping messages that have been
acknowledged at the master.

Queue mirroring therefore aims to enhance availability, but not
distribution of load across nodes (all participating nodes each do all
the work). It is important to note that using mirroring in RabbitMQ
actually reduces the availability of queues by dropping performance by
about 2 times in
tests [http://docs.openstack.org/developer/performance-docs/test_results/mq/rabbitmq/index.html],
and eventually leads to failures of
RabbitMQ [https://bugs.launchpad.net/oslo.messaging/+bug/1555007]
because of extremely high rate of context switches at node’s CPUs.

There are two main types of messages in OpenStack:

	
	Remote Procedure Call (RPC) messages carry commands and/or requests

	between microservices within a single component of OpenStack
platform (e.g. nova-conductor to nova-compute).

	
	Notification messages are issued by a microservice upon specific

	events and are consumed by other components (e.g. Nova
notifications about creating VMs are consumed by Ceilometer).

In proposed OpenStack architecture, only notification queues are
mirrored. All other queues are not, and if the instance of RabbitMQ
server dies after a message sent, but before it is read, that message is
gone forever. This is a trade-off for significant (at least 2 times)
performance and stability boost in potential bottleneck service.
Drawbacks of this mode of operation are:

	
	Long-running tasks might stuck in transition states due to loss of

	messages. For example, Heat stacks might never leave spawning
state. Most of the time, such conditions could be fixed by the
user via API.

Data Persistence

OpenStack’s RPC mechanism does not impose requirements for durable
queues or messages. Thus, no durability required for RabbitMQ queues,
and there are no ‘disk’ nodes in cluster. Restarting a RabbitMQ node
then will cause all data of that node to be lost. Since OpenStack does
not rely on RPC as a guaranteed transport, it doesn’t break the control
plane. Clients shall detect failure of a server they are talking to and
connect to another server automatically.

RabbitMQ service considered stateless in terms defined in this document
due to the reasons mentioned above.

Networking Considerations

RabbitMQ nodes address each other using domain names, either short or
fully-qualified (FQDNs). Therefore hostnames of all cluster members must
be resolvable from all cluster nodes, as well as machines on which
command line tools such as rabbitmqctl might be used.

RabbitMQ clustering has several modes of dealing with network
partitions [https://www.rabbitmq.com/partitions.html], primarily
consistency oriented. Clustering is meant to be used across LAN. It is
not recommended to run clusters that span WAN. The
Shovel [https://www.rabbitmq.com/shovel.html] or
Federation [https://www.rabbitmq.com/federation.html] plugins are
better solutions for connecting brokers across a WAN. Note that Shovel
and Federation are not equivalent to
clustering [https://www.rabbitmq.com/distributed.html].

Services Placement

RabbitMQ servers are to be installed on the dedicated nodes. Co-locating
RabbitMQ with other Control Plane services has negative impact on its
performance and stability due to high resource consumption under the
load. Other services that have different resource usage patterns can
prevent RabbitMQ from allocating sufficient resources and thus make
messaging unstable.

Based on that, RabbitMQ will require 3 dedicated nodes out of the pool
of Compute/Controller servers. These nodes can also host lightweight
services like Cinder, Keystone or Glance.

Alternatives

RabbitMQ is a server of choice for OpenStack messaging. Other
alternatives include:

	
	0MQ (ZeroMQ), a lightweight messaging library that integrates into

	all components and provides server-less distributed message
exchange.

	
	Kafka, a distributed commit log type messaging system, supported by

	oslo.messaging library in experimental mode.

ZeroMQ

This library provides direct exchange of messages between microservices.
Its architecture may include simple brokers or proxies that just relay
messages to endpoints, thus reducing the number of network connections.

ZeroMQ library support was present in OpenStack since early releases.
However, the implementation assumed direct connections between services
and thus a full mesh network between all nodes. This architecture
doesn’t scale well. More recent implementations introduce simple proxy
services on every host that aggregate messages and relay them to a
central proxy, which does host-based routing.

Benchmarks [http://lists.openstack.org/pipermail/openstack-dev/2016-March/090451.html]
show that both direct and proxy-based ZeroMQ implementations are more
efficient than RabbitMQ in terms of throughput and latency. However, in
the direct implementation, quick exhaustion of network connections limit
occurs at scale.

The major down side of the ZeroMQ-based solution is that the queues
don’t have any persistence. This is acceptable for RPC messaging, but
Notifications may require durable queues. Thus, if RPC is using ZeroMQ,
the Telemetry will require a separate messaging transport (RabbitMQ or
Kafka).

Kafka

Distributed commit log based service Kafka is supported in OpenStack’s
oslo.messaging library as an experimental. This makes it unfeasible to
include in the Reference Architecture..

MySQL/Galera

State database of OpenStack contains all data that describe the state of
the cloud. All components of OpenStack use the database to read and
store changes in their state and state of the data plane components.

Clustering

The proposed clustering solution is based on the native
orchestrator-specific state management with etcd providing distributed
monitoring and data exchange for the cluster. Cluster operations will be
triggered by orchestrator events and handled by custom scripts.

Failover and fencing of failed instances of MySQL is provided by scripts
triggered by the orchestrator upon changes in state and availability of
the members of Galera cluster. State and configuration information is
provided by etcd cluster.

Data Persistence

Galera implements replication mechanism to ensure that any data written
to one of the MySQL servers is synchronously duplicated to other members
of the cluster. When a new instance joins the cluster, one of the two
replication methods is used to synchronize it: IST or SST. If the
initial data set exists on the new node, incremental method (IST) is
used. Otherwise, full replication will be performed (SST).

Since all nodes in the cluster have synchronous copies of the data set
at any time, there is no need to use shared storage. All DB servers work
with the local disk storage.

Replication

Incremental synchronous replication is used to keep MySQL databases of
members in Galera cluster in sync. If a new member is added to the
cluster, full replication (SST) will be performed.

Full SST replication can take indefinite time if the data set is big
enough. To mitigate this risk, the proposed architecture includes a
number of hot stand-by MySQL servers in addition to one Active server.
The access to said servers is provided by an instance of a load balancer
(see details in Networking Considerations section).

Proposed architecture allows to quickly replace failing instances of
MySQL server without need to run full replication. It is still necessary
to restore the pool of hot standby instances whenever the failover event
occurs.

Networking Considerations

Load balancer is a key element of networking configuration of the Galera
cluster. Load balancer must be coordinated with the cluster, in terms
that it redirect write requests to appropriate instance of MySQL server.
It also ensures failover to hot standby instances and fencing of failed
active nodes.

Services Placement

MySQL servers forming the Galera cluster could run on the same physical
servers as instances of RabbitMQ broker.

Ceph Distributed Storage

Summary

Ceph is a distributed storage system with built-in replication
capability. Architecture of Ceph is designed for resiliency and
durability.

Ceph provides few different APIs for different types of supported
storage:

	Distributed file system

	Object storage

	Virtual block device

OpenStack platform generally uses Object API and Block Device API of
Ceph for Image and Virtual Block storage correspondingly.

Main components of Ceph are as follows.

	A Ceph Monitor maintains a master copy of the cluster map. A cluster
of Ceph monitors ensures high availability should a monitor
daemon fail. Storage cluster clients retrieve a copy of the
cluster map from the Ceph Monitor.

	A Ceph OSD Daemon checks its own state and the state of other OSDs
and reports back to monitors.

	RADOS gateway exposes the Object API of the platform. This API is
generally compatible with OpenStack Object Storage API, which
allows to use it as a Glance back-end without additional
modifications.

Ceph Monitor

For reliability purposes, Ceph Monitors should be placed to different
physical nodes. Those nodes might be the Storage nodes themselves,
albeit that is not generally recommended. Proper resilience of the
cluster can be ensured by using 3 instances of Ceph Monitor, each
running on different hosts.

Ceph OSD

Every storage device requires an instance of Ceph OSD daemon to run on
the node. These daemons might be resource intensive under certain
conditions. Since one node usually have multiple devices attached to it,
there are usually more than one OSD process running on the node. Thus,
it is recommended that no other services are placed to the OSD nodes.

RADOS Gateway

This service exposes an Object API via HTTP. It have low resource
footprint and can be co-located with other services, for example, with a
Ceph Monitor. Multiple radosgw daemons should be used to provide
redundancy of the service. Load balancer should be placed in front of
instances of radosgw for load distribution and failover.

Services Placement

Ceph scales very well by adding new OSD nodes when capacity increase is
required. So the size of the Ceph cluster may vary for different clouds
of the same scale. In this document, a cluster with 45 OSD nodes is
described.

Instances of Monitor service require 1 dedicated node per instance, to
the total of 3 nodes. RADOS gateway servers run on the same nodes as
Monitors.

Control Plane Operations Monitoring

Summary

Monitoring the OpenStack Control Plane infrastructure is essential for
operating the platform. The main goal of it is to ensure that an
operator is alerted about failures and degradations in service level of
the environment. Metering plays less important role in this type of
monitoring.

Currently proposed solution for infrastructure monitoring is produced by
Stacklight project.

Stacklight is a distributed framework for collecting, processing and
analyzing metrics and logs from OpenStack components. It includes the
following services:

	Stacklight Collector + Aggregator

	Elasticsearch + Kibana

	InfluxDB + Grafana

	Nagios

Stacklight Collector

Smart agent that runs on every node in the OpenStack environment. It
collects logs, processes metrics and notifications, generates and sends
alerts when needed. Specialized instance of Collector called Aggregator
aggregates metrics on the cluster level and performs special correlation
functions.

Elasticsearch + Kibana

These components are responsible for analyzing large amounts of textual
data, particularly logs records and files coming from OpenStack platform
nodes. Kibana provides graphical interface that allows to configure and
view correlations in messages from multiple sources.

A typical setup at least requires a quad-core server with 8 GB of RAM
and fast disks (ideally, SSDs). The actual disk space you need to run
the subsystem on depends on several factors including the size of your
OpenStack environment, the retention period, the logging level, and
workload. The more of the above, the more disk space you need to run the
Elaticsearch-Kibana solution. It is highly recommended to use dedicated
disk(s) for your data storage.

InfluxDB + Grafana

InfluxDB is a time series database that provides high throughput and
real-time queries for reduced support of standard SQL capabilities like
efficiently updating records. Grafana exposes graphic interface to time
series data, displays graphs of certain metrics in time and so on.

The hardware configuration (RAM, CPU, disk(s)) required by this
subsystem depends on the size of your cloud environment and other
factors like the retention policy. An average setup would require a
quad-core server with 8 GB of RAM and access to a 500-1000 IOPS disk.
For sizeable production deployments it is strongly recommended to use a
disk capable of 1000+ IOPS like an SSD. See the *InfluxDB Hardware
Sizing
Guide* [https://docs.influxdata.com/influxdb/v0.10/guides/hardware_sizing/]
for additional sizing information.

Nagios

In Stacklight architecture, Nagios does not perform actual checks on the
hosts. Instead it provides transport and user interface for the alerting
subsystem. It receives alerts from Collectors and generates
notifications to the end users or cloud operators.

A typical setup would at least require a quad-core server with 8 GB of
RAM and fast disks (ideally, SSDs).

Services Placement

InfluxDB and Elasticsearch subsystems of the Stacklight solution should
run on dedicated servers. Additionally, clustered InfluxDB needs at
least three nodes to form a quorum. Elasticsearch scales horizontally by
adding instances, each running on a separate node. At least three
instances of Elasticsearch are recommended.

Stacklight Aggregator service could share a physical node with other
low-profile services.

Nagios server can be co-located with Stacklight Aggregator due to its
low resource footprint.

The total of 5 additional physical nodes are required to install Control
Plane Operations Monitoring framework based on Stacklight.

Services Placement Summary

The following table summarizes the placement requirements of the
services described above.

	Service
	Number Of Instances
	Number Of Dedicated Nodes
	Can Share A Node
	Requires a Load Balancer

	keystone-all
	3
	
	

	yes
	yes

	nova-api
	3
	
	

	yes
	yes

	nova-scheduler
	3
	
	

	yes
	no

	nova-conductor
	3
	
	

	yes
	no

	nova-compute*
	
	

	
	

	yes
	no

	neutron-server
	3
	
	

	yes
	no

	neutron-dhcp-agent
	3
	
	

	yes
	no

	neutron-l2-agent*
	
	

	
	

	yes
	no

	neutron-l3-agent
	3
	
	

	yes
	no

	neutron-metadata-agent
	3
	
	

	yes
	no

	glance-api
	3
	
	

	yes
	yes

	glance-registry
	3
	
	

	yes
	no

	cinder-api
	3
	
	

	yes
	yes

	cinder-scheduler
	3
	
	

	yes
	no

	cinder-volume
	
	

	
	

	yes
	no

	horizon/apache2
	3
	
	

	yes
	yes

	rabbitmq-server
	3
	3
	yes
	no

	mysqld-server
	3
	3
	yes
	yes**

	ceph-mon
	3
	
	

	yes
	no

	ceph-osd***
	
	

	
	

	no
	no

	radosgw
	3
	
	

	yes
	yes

	lma-aggregator
	1
	
	

	yes
	no

	Influxdb + Grafana
	3
	
	

	yes
	no

	Elasticsearch + Kibana
	3
	
	

	yes
	no

	Nagios
	1
	
	

	yes
	no

	TOTAL
	
	

	6
	
	

	
	

	Service
	Number Of Instances
	Number Of Dedicated Nodes
	Can Share A Node
	Requires a Load Balancer

	keystone-all
	3
	3
	yes
	yes

	nova-api
	3
	
	

	yes
	yes

	nova-scheduler
	3
	
	

	yes
	no

	nova-conductor
	3
	
	

	yes
	no

	nova-compute*
	
	

	
	

	yes
	no

	neutron-server
	3
	
	

	yes
	no

	neutron-dhcp-agent
	3
	
	

	yes
	no

	neutron-l2-agent*
	
	

	
	

	yes
	no

	neutron-l3-agent
	3
	
	

	yes
	no

	neutron-metadata-agent
	3
	
	

	yes
	no

	glance-api
	3
	
	

	yes
	yes

	glance-registry
	3
	
	

	yes
	no

	cinder-api
	3
	
	

	yes
	yes

	cinder-scheduler
	3
	
	

	yes
	no

	cinder-volume
	
	

	
	

	yes
	no

	horizon/apache2
	3
	
	

	yes
	yes

	rabbitmq-server
	3
	3
	yes
	no

	mysqld-server
	3
	3
	yes
	yes**

	ceph-mon
	3
	
	

	yes
	no

	ceph-osd***
	
	

	
	

	no
	no

	radosgw
	3
	
	

	yes
	yes

	lma-aggregator
	1
	
	

	yes
	no

	Influxdb + Grafana
	3
	
	

	yes
	no

	Elasticsearch + Kibana
	3
	
	

	yes
	no

	Nagios
	1
	
	

	yes
	no

	TOTAL
	
	

	9
	
	

	
	

	Service
	Number Of Instances
	Number Of Dedicated Nodes
	Can Share A Node
	Requires a Load Balancer

	keystone-all
	5
	5
	yes
	yes

	nova-api
	3
	
	

	yes
	yes

	nova-scheduler
	5
	
	

	yes
	no

	nova-conductor
	3
	
	

	yes
	no

	nova-compute*
	
	

	
	

	yes
	no

	neutron-server
	3
	
	

	yes
	no

	neutron-dhcp-agent
	3
	
	

	yes
	no

	neutron-l2-agent*
	
	

	
	

	yes
	no

	neutron-l3-agent
	3
	
	

	yes
	no

	neutron-metadata-agent
	3
	
	

	yes
	no

	glance-api
	3
	
	

	yes
	yes

	glance-registry
	3
	
	

	yes
	no

	cinder-api
	3
	
	

	yes
	yes

	cinder-scheduler
	3
	
	

	yes
	no

	cinder-volume
	
	

	
	

	yes
	no

	horizon/apache2
	3
	
	

	yes
	yes

	rabbitmq-server
	3
	3
	no
	no

	mysqld-server
	3
	3
	yes
	yes**

	ceph-mon
	3
	
	

	yes
	no

	ceph-osd***
	
	

	
	

	no
	no

	radosgw
	3
	
	

	yes
	yes

	lma-aggregator
	1
	
	

	yes
	no

	Influxdb + Grafana
	3
	
	

	yes
	no

	Elasticsearch + Kibana
	3
	
	

	yes
	no

	Nagios
	1
	
	

	yes
	no

	TOTAL
	
	

	11
	
	

	
	

* this service runs on a Compute/hypervisor host

** this service might require specialized load balancer (proxysql)

*** this service runs on a Storage/OSD node

Total number of nodes for control plane is 6 which includes separate servers
for monitoring infrastructure and RabbitMQ/Galera services. The following
schema describes the layout of services in the test cluster.

[image: image9]

Data Plane

Compute Virtualization

QEMU implementation of Linux KVM is used as a virtualization hypervisor.
The KVM runs under control of libvirtd daemon, configured and managed by
Nova Compute microservice (nova-compute).

Network

Depending on the picked Neutron plugin, data plane network might be
realized by different technology stacks. Reference architecture employs
OVS+VXLAN plugin, network data plane at compute hosts runs on
OpenVSwitch virtual switching software.

Storage

Local disks and Ceph cluster RBD volumes are both used to provide block
storage capability to different services in the platform.

Ephemeral

Disk files of the VM instances running in the cloud are stored in Ceph
distributed storage via RBD. This enables live migration of VMs and high
availability of data in certain cases.

Virtual Block Devices

Virtual block storage devices are provided by Ceph via RBD.

Images

Images used by Nova to spin up new VM instances are stored in Ceph via
Glance service’s back end driver.

Snapshot

Snapshots are stored in Ceph.

Database

Database files are kept on the local storage devices of nodes that run
database servers. The replication and availability of the data are
ensured by WSREP mechanism of Galera cluster.

Monitoring

The monitoring metrics and time-series data are written to InfluxDB
database. The database keeps its files on a local storage, similar to
the approach taken for state database (see above).

Logs

Logs are written to local disks of nodes, plus optionally to remote logs
collector service which is the part of Telemetry component of the
platform.

References

This section contains references to external documents used in
preparation of this document.

	Testing on scale of 1000 compute nodes [http://docs.openstack.org/developer/performance-docs/test_results/1000_nodes/index.html]

	Performance testing of OpenStack [http://docs.openstack.org/developer/performance-docs/]

	RabbitMQ Clustering [https://www.rabbitmq.com/clustering.html]

	RabbitMQ High Availability [https://www.rabbitmq.com/ha.html]

	ZeroMQ Status Update [http://lists.openstack.org/pipermail/openstack-dev/2016-March/090451.html]

 OpenStack Reference Architecture For 1000 Nodes

OpenStack Reference Architecture For 1000 Nodes

This document proposes a new Reference Architecture (RA) of OpenStack
installation on top of Kubernetes that supports very large numbers of
compute nodes, using container technologies to improve scalability and
high availability of OpenStack Control Plane services. Containerization
of OpenStack components will also enable provisioning, patching and
upgrading large numbers of nodes in parallel, with high reliability and
minimal downtime.

Introduction/Executive Summary

This document contains recommendations for building specific clouds
depending for different use cases. All recommendations are validated and
tested on the described scale in both synthetic and real-world
configurations.

The proposed Reference Architecture applies the following open source
tools (among others):

	OpenStack Control Plane is a scalable, modular cloud controller with
support for all aspects of virtualized infrastructure.

	Ceph is a distributed storage system that provides all the most
popular types of storage to a virtualized infrastructure: object
storage, virtual block storage and distributed file system.

	InfluxDB is a time-series database optimized for collecting metrics
from multiple sources in nearly-real time and providing access to
recorded metrics.

	Docker containers are used to isolate OpenStack services from the
underlying operating system and control the state of every
service more precisely.

Highlights

Highlights of this document include:

	Hardware and network configuration of the lab used to develop the
Reference Architecture.

	OpenStack Control Plane overview - Details how the OpenStack Control
Plane is organized, including placement of the services for
scaling and high availability of the control plane.

	Data plane overview - Describes the approach to the data plane and
technology stack used in the Reference Architecture.

	Granular update and upgrade overview - Describes how the proposed
Reference Architecture supports updating and upgrading on all
levels from individual services to the whole OpenStack
application.

Overview

Hardware and network considerations

This section summarizes hardware considerations and network layouts for
the proposed solution. It defines the basic requirements to server
equipment hosting the cloud based on the CCP RA. Requirements to network
infrastructure in terms of L2 and L3 topologies, services like DNS and
NTP and external access provided in the network.

OpenStack Control Plane

The Control Plane consists of OpenStack component services, like Nova,
Glance and Keystone, and supplementary services like MySQL database
server and RabbitMQ server, all enveloped in Docker containers and
managed by an orchestrator (e.g. Kubernetes).

OpenStack Data Plane

OpenStack data plane is constituted by backends to various drivers of
different components of OpenStack. They all fall into 3 main categories:

	Hypervisor is data plane component backing OpenStack Compute (Nova),
for example, libvirt or VMWare vSphere.

	Networking is multiple data plane components under management of
OpenStack Networking, for example, OpenVSwitch.

	Storage has multiple components managed by OpenStack Storage and
Images services. This category includes such systems as LVM,
iSCSI, Ceph and others.

Granular Life Cycle Management, Updates and Upgrades

This document describes the strategy of updating the OpenStack cloud and
its components to new version. The strategy of upgrade is based on
containerization of all those components. Containers effectively split
the state of the system into set of states of individual container.
Every container’s state is managed mostly independently.

Hardware Overview

Server Hardware Specifications

The following server hardware was used in a lab to install and test the
proposed architecture solution. For Compute nodes, two configurations
are used.

Configuration One

	Server model is Dell R630

	2x12 Core CPUs E5-2680v3

	256GB of RAM

	2x800GB SSD Intel S3610

	2x10GB Intel X710 dual-port NICs

Configuration Two

	Server model is Lenovo RD550-1U

	2x12 Core CPUs E5-2680v3

	256GB of RAM

	2x800GB SSD Intel S3610

	2x10GB Intel X710 dual-port NICs

For Storage nodes, the following configuration is used.

	Server model is Lenovo RD650

	2x12 Core CPUs E5-2670v3

	128GB RAM

	2x480GB SSD Intel S3610

	10x2TB HDD

	2x10GB Intel X710 dual-port NICs

Resource Quantities

Compute/Controller Resources

The number of Compute/Controller nodes in the environment: 516 nodes

The number of CPU Cores available to hypervisors and control plane
services: 12,384 cores

The amount of RAM available to hypervisors and control plane services:
132,096 GB

Storage Resources

	The number of Storage nodes in the environment: 45 nodes

	The number of CPU Cores available to storage services: 1,080 cores

	The amount of RAM available to storage cache: 5,760 GB

	The total size of raw disk space available on storage nodes: 900 TB

Servers are installed in 35 racks connected by ToR switches to spine
switches.

Network Schema

Underlay Network Topology

The environment employs leaf switches topology in the underlay network.
BGP protocol used in the underlay network to ensure multipath links
aggregation (IP ECMP) to leaf switches. ToR leaf switches are connected
to spines with 40GbE uplinks.

The leaf switches use VXLANs to provide overlay network to servers, and
MLAG aggregation to ensure availability and performance on the
downstream links. Servers are connected to ToR switches with 40GbE
port-channel links (4x10GbE with MLAG aggregation).

The following diagram depicts the network schema of the environment:

[image: image0]

No specific QoS configuration was made in the underlay network. Assume
that all services share the total bandwidth of network link without
guarantees for individual processes or sockets.

The following models of switching hardware were used throughout testing
effort in the schema described above:

	Spine switches: Arista 7508E (4x2900PS, 6xFabric-E modules,
1xSupervisorE module)

	ToR switches: Arista 7050X

Network for OpenStack Platform

OpenStack platform uses underlay network to exchange data between its
components, expose public API endpoints and transport the data of
overlay or tenant networks. The following classes of networks are
defined for OpenStack platform in proposed architecture.

	Management network. This is the network where sensitive data exchange
happens. Sensitive data includes authentication and authorization
credentials and tokens, database traffic, RPC messages and
notifications. This network also provides access to
administrative API endpoints exposed by components of the
platform.

	
	Public network. Network of this class provides access to API

	endpoints exposed by various components of the platform. It also
connects Floating IPs of virtual server instances to external
network segments and Internet.

	Storage network. Specialized network to transport data of storage
subsystem, i.e. Ceph cluster. It also connects to internal Ceph
API endpoints.

	Overlay network. Networks of this class transport the payload of
tenant networks, i.e. the private networks connecting virtual
server instances. The current architecture employs VXLANs for L2
encapsulation.

There can be one or more networks of each class in a particular cloud,
for example, Management network class can include separate segments for
messaging, database traffic and Admin API endpoints, and so on.

In addition to role segmentation, networks in one class can be separated
by scale. For example, Public network class might include multiple
per-rack segments, all connected by an L3 router.

[image: image1]

Control Plane

OpenStack Overview

OpenStack is a system that provides Infrastructure as a Service (IaaS).
IaaS is essentially a set of APIs that allow for creation of elements of
typical data center infrastructure, such as virtual servers, networks,
virtual disks and so on. Every aspect of an infrastructure is controlled
by a particular component of OpenStack:

	OpenStack Compute (Nova) controls virtual servers lifecycle, from
creation through management to termination.

	OpenStack Networking (Neutron) provides connectivity between virtual
servers and to the world outside.

	OpenStack Image (Glance) holds base disk images used to boot the
instances of virtual servers with an operating system contained
in the image.

	OpenStack Block Storage (Cinder) manages the virtual block storage
and supplies it to virtual servers as block devices.

	OpenStack Identity (Keystone) provides authentication/authorization
to other components and clients of all APIs.

Guidelines for OpenStack at Scale

Currently, OpenStack scalability is limited by several factors:

	Placement responsiveness desired

	MySQL scalability

	Messaging system scalability

	Scalability of the SDN

	Scalability of the SDS

Scheduler Scalability

In general, the scheduling strategy for OpenStack is a completely
optimistic determination which means the state of all things is
considered whenever a placement decision is made. As more factors are
added to the consideration set (special hardware, more compute nodes,
affinity, etc.) the time to place resources increases at a quadratic
rate. There is work being done on splitting out the scheduling and
placement parts of Nova and isolating them as a separate service, like
Cinder or Neutron. For now, however, this is a work in progress and we
should not rely on increased scheduler performance for another few
releases.

OpenStack can seamlessly accommodate different server types based on
CPU, memory and local disk without partitioning of the server pool.
Several partitioning schemes exist that provide ability to specify pools
of servers appropriate for a particular workload type. A commonly used
scheme is server aggregates, which allows specific image sets to be
scheduled to a set of servers based on server and image tags that the
administrator has defined.

MySQL Scalability

As almost all OpenStack services use MySQL to track state, scalability
of the database can become a problem. Mirantis OpenStack deploys with a
MySQL + Galera cluster which allows for reads and writes to be scaled in
a limited fashion. There is also the option to offload many types of
reads to asynchronous slaves which was introduced in the Icehouse
release. We should see support for both Galera and the asynchronous
approaches increase in Kilo and subsequent releases. There are OpenStack
installations in the wild with tens of thousands of nodes running under
both of these scaling models. However, careful tuning and care of the
databases is a very important consideration. MySQL is recommended to run
on dedicated nodes. The Control Plane DB should not be used by Tenant
Applications or other solutions like Zabbix; those should provision
another MySQL cluster on other physical nodes.

Messaging System Scalability

A majority of OpenStack services use AMQP implementations (RabbitMQ and
Qpid) for message transport and RPC. As with MySQL, there are examples
of installations in the wild which have successfully scaled this
messaging infrastructure to tens of thousands of nodes. However, without
a deliberate federation strategy and/or careful tuning and maintenance,
these systems easily become unstable around 700-1000 compute nodes
depending on usage patterns. To scale OpenStack past 200 nodes, all
these areas will require planning.

OpenStack compute design is modular in nature. Beginning with KVM as the
only hypervisor choice does not constrain us from building a
multi-hypervisor cloud later, when need arises.

Services Overview

The following paragraphs describe how the individual services and
components should be placed and configured in the proposed Reference
Architecture. All services are divided into two categories: stateless
and stateful. Each category requires specific approach which is outlined
below.

Stateless Services

Services of this type do not record their state in their environment.
Those services can be killed and restarted without risk of losing data.
Most of OpenStack component services are inherently stateless being
either HTTP-based API servers or message queue processors.

General approach to stateless services is envelop the service into
Docker container with minimal to no configuration embedded.

Stateful Services

Services that keep track of their state in some persistent storage and
cannot be restarted in clean environment without losing that state are
considered stateful. The main stateful component of the OpenStack
platform is MySQL state database. Most of other services rely on the
database to keep track of their own state.

Containers that run stateful services must have persistent storage
attached to them. This storage must be made available in case if the
container with stateful service should be move to another location. Such
availability can be ensured on application level via replication of some
sort, or on network level by redirecting connections from moving
container to the same storage location.

OpenStack Identity (Keystone)

Keystone service provides identity to all other OpenStack services and
external clients of OpenStack APIs. The main component of Identity
service is an HTTP server that exposes an API of the service.

Keystone service is used by all other components of OpenStack for
authorization of requests, including system requests between services
and thus gets called a lot even if the platform is idle. This generates
load on CPU resources of server where it runs. Thus, it is recommended
to run Keystone service on dedicated node and not co-locate it with
other resource intensive components.

For availability and load distribution it is recommended to run at least
5 instances of Keystone at the scale of hundreds of nodes. Load balancer
with a Virtual IP address should be placed in front of the Keystone
services to ensure handling of failures and even distribution of
requests.

Per these recommendations, the required number of dedicated physical
nodes to run Keystone service is 5. These nodes can be used to host
other low footprint services. Resource intensive services should not run
on those nodes.

Apache2 Web Server

Apache web server wraps Keystone and Horizon services and exposes them
as a web-services. However, since Horizon can generate significant load
on resources, it is not recommended to co-locate it with Keystone. See
below for recommendations on scaling Horizon.

[image: image2]

OpenStack Compute (Nova)

Nova has multiple service not all of which are stateless. API server,
scheduler and conductor in particular are stateless, while nova-compute
service is not as it manages the state of data-plane components on a
compute node.

Nova API

Web server that exposes Compute API of the OpenStack platform. This is a
stateless service. Nova API server consumes significant resources at
scale of hundreds of nodes.

Nova API server should run on a dedicated physical servers to ensure it
does not share resources with other services with comparably big
footprint. It can co-locate with more lightweight services.

For availability reasons, it is recommended to run at least 3 instances
of API server at any time. Load balancer with Virtual IP address shall
be placed in front of all API servers.

[image: image3]

Nova Scheduler

Scheduling service of Nova is stateless and can be co-located with
services that have larger footprint. Scheduler should be scaled by
adding more service instances since its architecture is inherently
non-scalable due to using single thread model.

Using multiple scheduler processes might lead to unexpected
oversubscription of hypervisor resources if many simultaneous placement
requests are being served.

At the scale of hundreds of nodes use at least 8 instances of Scheduler.
Since they can be co-located with other services, it won’t take any
additional physical servers from the pool. Schedulers can be placed to
nodes running other Nova control plane services (i.e. API and
Conductor).

Nova Conductor

Centralized conductor service is recommended for large-scale
installations of Nova. It adds database interface layer for improved
security and complex operations. It is a stateless service that is
scaled horizontally by adding instances of it running on different
physical servers.

Conductor is resources-intensive service and should not be co-located
with other services. It runs on dedicated hardware nodes. One instance
of Conductor service should be running per physical node.

To ensure that the Conductor service is highly available, run 3
instances of the service at any time. This will require 3 dedicated
physical servers from the pool.

[image: image4]

Nova Compute

Compute service is essentially an agent service of Nova. An instance of
it runs on every hypervisor node in an OpenStack environment and
controls the virtual machines and other connected resources on a node
level.

Compute service in the proposed architecture is not containerized. It
runs in hypervisor host and talks to different local and remote APIs to
get the virtual machines up and running. One instance of Compute service
runs per a hypervisor.

Services Placement

Nova control plane services use at least 6 dedicated nodes:

	3 nodes for 3 instances of Conductor service

	3 nodes for 3 instances of API service

8 instances of Scheduler service are distributed between the said
dedicated nodes and/or nodes dedicated to other components of the
platform.

Load balancer is placed in front of the API services to ensure
availability and load distribution for the Compute API of OpenStack
platform.

Compute services run per-node on hypervisor hosts (compute nodes) in
non-redundant fashion.

OpenStack Networking (Neutron)

This component includes API server that exposes HTTP-based API and a set
of agents which actually manage data plane resources, such as IP
addresses, firewall and virtual switches.

Neutron Server

An API server exposes Neutron API and passes all web service calls to
the Neutron plugin for processing. This service generates moderate load
on processors and memory of physical servers. In proposed architecture,
it runs on the same nodes as other lightweight API servers. A minimal of
3 instances of the server is recommended for redundancy and load
distribution.

Load balancer working in front of the API servers helps to ensure their
availability and distribute the flow of requests.

[image: image5]

Neutron DHCP agent

DHCP agent of Neutron is responsible for assigning IP addresses to VMs.
The agent is horizontally scalable by adding new instances of it
distributed between different nodes. DHCP agent can be co-located to any
other services and can run on hypervisor hosts as well.

Neutron L3 agent

L3 agent controls routing in Public and Private networks by creating and
managing namespaces, routers, floating IP addresses and network
translations. The agent can be scaled by adding instances. High
availability of the agent is ensured by running its instances in
Corosync/Pacemaker cluster or using orchestrator-driven clustering and
state tracking (e.g. Kubernetes events system with etcd).

The agent has low resources footprint and can be co-located with more
resource-intensive services, for example, Neutron Server.

Neutron L2 agent

L2 agent manages data link layer configuration of the overlay network
for Compute nodes. It also provides L2 functions to L3 agent. The agent
is specific to Neutron plugin.

The L2 agent used with OpenVSwitch plugin generates high CPU load when
creates and monitors the OVS configurations. It has to run on any host
that runs nova-compute, neutron-l3-agent or neutron-dhcp-agent.

Neutron metadata agent

The metadata agent provides network metadata to virtual servers.
For availability and redundancy, it is recommended to run at least 3
instances of the agent. They can share a node with other Neutron or
control plane services.

Services Placement

Neutron control plane services require at least 3 nodes for redundancy
of Neutron Server. Three instances are recommended for high
availability. All micro services of Neutron could be co-located with the
Neutron Servers or with other components’ services.

Load balancer should be placed in front of the Neutron Server to ensure
availability and load distribution for the Network API of the OpenStack
platform.

L3 and DHCP agents are co-located with instances of Neutron Server on
the same physical nodes. L2 agent works on every Compute node and on
every node that runs L3 and/or DHCP agent.

OpenStack Images (Glance)

Images service consists of API and indexing service. Both of them are
stateless and can be containerized.

Glance API

This service exposes Images API of OpenStack platform. It is used to
upload and download images and snapshot.

Glance API server has low resource consumption and can be co-located
with other services. It does not require dedicated physical servers.

Glance API server scales by adding new instances. Load balancer is
required to provide a single virtual address to access the API. The load
can be evenly distributed between instances of Glance API.

Important parameter of the Image Service architecture is the storage
backend. The following types of storage are proposed for Glance in this
Reference Architecture:

	Local filesystem

	Ceph cluster

With local storage, the consistency of the store for all instances of
Glance API must be ensured by an external component (e.g. replication
daemon).

Ceph backend natively provides availability and replication of stored
data. Multiple instances of Glance API service work with the same shared
store in Ceph cluster.

[image: image6]

Glance Registry

Registry serves images metadata part of the Images API. It stores and
manages a catalog of images. It has low footprint and can share a
physical node with other resource intensive services.

Services Placement

Micro services of Glance do not require dedicated physical servers. They
can be co-located with other services.

For the purposes of high availability and redundancy, at least 3
instances of Glance API service should run at any time. Load balancer
must be placed in front of those instances to provide single API
endpoint and distribute the load.

OpenStack Block Storage (Cinder)

Storage service manages and exposes a virtual block storage. The server
that handles the management of low-level storage requires access to the
disk subsystem.

Cinder API

This service exposes Volume API of the OpenStack platform. Volume API is
not very often used by other components of OpenStack and doesn’t consume
too much resources. It could run on the same physical node with other
resource non intensive services.

For availability and redundancy purposes, it is proposed to run at least
3 instances of Cinder API. Load balancer should be placed in front of
these instances to provide distribution of load and failover
capabilities.

[image: image7]

Cinder Scheduler

Scheduler selects an instance of the Volume micro service to call when a
client requests creation of a virtual block volume. Scheduler is not
resource intensive and can be co-located with other services. It scales
horizontally by adding new instances of the service. For redundancy
purposes, the instances of scheduler service should be distributed
between different physical servers.

Cinder Volume

Volume service manages block storage via appropriate API which depends
on the technology in use. With Ceph as a provider of virtual block
storage, single instance of Cinder Volume service is required to manage
the Ceph cluster via its API. If virtual block storage is provided by
using LVM with local disks of Compute nodes, the Volume service must be
running on every Compute node in the OpenStack environment.

In Ceph case, it is recommended to run at least 3 instances of the
Volume service for the availability and redundancy of the service. Each
virtual volume is managed by one instance Volume service at a time.
However, if that instance is lost, another one takes over on its
volumes.

[image: image8]

Services Placement

Cinder services do not require dedicated physical nodes. They run on the
same physical servers with other components of control plane of the
OpenStack platform.

The instances of Cinder API service are placed behind a loca balancer to
ensure the distribution of load and availability of the service.

OpenStack Dashboard (Horizon)

Horizon dashboard provides user interface to the cloud’s provisioning
APIs. This is a web application running on top of Apache2 web server.
For availability purposes, multiple instances of the server are started.
Load balancer is placed in front of the instances to provide load
distribution and failover. Horizon does not require dedicated physical
node. It can be co-located with other services of other components of
the OpenStack platform.

For security reasons, it is not recommended to use the same instances
Apache2 server to wrap both Horizon and Keystone API services.

RabbitMQ

The messaging server allows all distributed components of an OpenStack
service to communicate to each other. Services use internal RPC for
communication. All OpenStack services also send broadcast notifications
via messaging queue bus.

Clustering

The prerequisite for High Availability of queue server is the configured
and working RabbitMQ cluster. All data/state required for the operation
of a RabbitMQ cluster is replicated across all nodes. An exception to
this are message queues, which by default reside on one node, though
they are visible and reachable from all nodes.

Cluster assembly requires installing and using a clustering plugin on
all servers. Proposed solution for RabbitMQ clustering is the
rabbitmq-autocluster [https://github.com/aweber/rabbitmq-autocluster]*plugin* [https://github.com/aweber/rabbitmq-autocluster].

The RabbitMQ cluster also needs proper fencing mechanism to exclude
split brain conditions and preserve a quorum. Proposed solution for this
problem is using ‘pause_minority’ partition
mode [https://www.rabbitmq.com/partitions.html] with the
rabbit-autocluster plugin.

Replication

Replication mechanism for RabbitMQ queues is known as ‘mirroring’. By
default, queues within a RabbitMQ cluster are located on a single node
(the node on which they were first declared). This is unlike exchanges
and bindings, which can always be considered to be on all nodes. Queues
can optionally be made mirrored across multiple nodes. Each mirrored
queue consists of one master and one or more slaves, with the oldest
slave being promoted to the new master if the old master disappears for
any reason.

Messages published to the queue are replicated to all members of the
cluster. Consumers are connected to the master regardless of which node
they connect to, with slave nodes dropping messages that have been
acknowledged at the master.

Queue mirroring therefore aims to enhance availability, but not
distribution of load across nodes (all participating nodes each do all
the work). It is important to note that using mirroring in RabbitMQ
actually reduces the availability of queues by dropping performance by
about 2 times in
tests [http://docs.openstack.org/developer/performance-docs/test_results/mq/rabbitmq/index.html],
and eventually leads to failures of
RabbitMQ [https://bugs.launchpad.net/oslo.messaging/+bug/1555007]
because of extremely high rate of context switches at node’s CPUs.

There are two main types of messages in OpenStack:

	
	Remote Procedure Call (RPC) messages carry commands and/or requests

	between microservices within a single component of OpenStack
platform (e.g. nova-conductor to nova-compute).

	
	Notification messages are issued by a microservice upon specific

	events and are consumed by other components (e.g. Nova
notifications about creating VMs are consumed by Ceilometer).

In proposed OpenStack architecture, only notification queues are
mirrored. All other queues are not, and if the instance of RabbitMQ
server dies after a message sent, but before it is read, that message is
gone forever. This is a trade-off for significant (at least 2 times)
performance and stability boost in potential bottleneck service.
Drawbacks of this mode of operation are:

	
	Long-running tasks might stuck in transition states due to loss of

	messages. For example, Heat stacks might never leave spawning
state. Most of the time, such conditions could be fixed by the
user via API.

Data Persistence

OpenStack’s RPC mechanism does not impose requirements for durable
queues or messages. Thus, no durability required for RabbitMQ queues,
and there are no ‘disk’ nodes in cluster. Restarting a RabbitMQ node
then will cause all data of that node to be lost. Since OpenStack does
not rely on RPC as a guaranteed transport, it doesn’t break the control
plane. Clients shall detect failure of a server they are talking to and
connect to another server automatically.

RabbitMQ service considered stateless in terms defined in this document
due to the reasons mentioned above.

Networking Considerations

RabbitMQ nodes address each other using domain names, either short or
fully-qualified (FQDNs). Therefore hostnames of all cluster members must
be resolvable from all cluster nodes, as well as machines on which
command line tools such as rabbitmqctl might be used.

RabbitMQ clustering has several modes of dealing with network
partitions [https://www.rabbitmq.com/partitions.html], primarily
consistency oriented. Clustering is meant to be used across LAN. It is
not recommended to run clusters that span WAN. The
Shovel [https://www.rabbitmq.com/shovel.html] or
Federation [https://www.rabbitmq.com/federation.html] plugins are
better solutions for connecting brokers across a WAN. Note that Shovel
and Federation are not equivalent to
clustering [https://www.rabbitmq.com/distributed.html].

Services Placement

RabbitMQ servers are to be installed on the dedicated nodes. Co-locating
RabbitMQ with other Control Plane services has negative impact on its
performance and stability due to high resource consumption under the
load. Other services that have different resource usage patterns can
prevent RabbitMQ from allocating sufficient resources and thus make
messaging unstable.

Based on that, RabbitMQ will require 3 dedicated nodes out of the pool
of Compute/Controller servers.

Alternatives

RabbitMQ is a server of choice for OpenStack messaging. Other
alternatives include:

	
	0MQ (ZeroMQ), a lightweight messaging library that integrates into

	all components and provides server-less distributed message
exchange.

	
	Kafka, a distributed commit log type messaging system, supported by

	oslo.messaging library in experimental mode.

ZeroMQ

This library provides direct exchange of messages between microservices.
Its architecture may include simple brokers or proxies that just relay
messages to endpoints, thus reducing the number of network connections.

ZeroMQ library support was present in OpenStack since early releases.
However, the implementation assumed direct connections between services
and thus a full mesh network between all nodes. This architecture
doesn’t scale well. More recent implementations introduce simple proxy
services on every host that aggregate messages and relay them to a
central proxy, which does host-based routing.

Benchmarks [http://lists.openstack.org/pipermail/openstack-dev/2016-March/090451.html]
show that both direct and proxy-based ZeroMQ implementations are more
efficient than RabbitMQ in terms of throughput and latency. However, in
the direct implementation, quick exhaustion of network connections limit
occurs at scale.

The major down side of the ZeroMQ-based solution is that the queues
don’t have any persistence. This is acceptable for RPC messaging, but
Notifications may require durable queues. Thus, if RPC is using ZeroMQ,
the Telemetry will require a separate messaging transport (RabbitMQ or
Kafka).

Kafka

Distributed commit log based service Kafka is supported in OpenStack’s
oslo.messaging library as an experimental. This makes it unfeasible to
include in the Reference Architecture..

MySQL/Galera

State database of OpenStack contains all data that describe the state of
the cloud. All components of OpenStack use the database to read and
store changes in their state and state of the data plane components.

Clustering

The proposed clustering solution is based on the native
orchestrator-specific state management with etcd providing distributed
monitoring and data exchange for the cluster. Cluster operations will be
triggered by orchestrator events and handled by custom scripts.

Failover and fencing of failed instances of MySQL is provided by scripts
triggered by the orchestrator upon changes in state and availability of
the members of Galera cluster. State and configuration information is
provided by etcd cluster.

Data Persistence

Galera implements replication mechanism to ensure that any data written
to one of the MySQL servers is synchronously duplicated to other members
of the cluster. When a new instance joins the cluster, one of the two
replication methods is used to synchronize it: IST or SST. If the
initial data set exists on the new node, incremental method (IST) is
used. Otherwise, full replication will be performed (SST).

Since all nodes in the cluster have synchronous copies of the data set
at any time, there is no need to use shared storage. All DB servers work
with the local disk storage.

Replication

Incremental synchronous replication is used to keep MySQL databases of
members in Galera cluster in sync. If a new member is added to the
cluster, full replication (SST) will be performed.

Full SST replication can take indefinite time if the data set is big
enough. To mitigate this risk, the proposed architecture includes a
number of hot stand-by MySQL servers in addition to one Active server.
The access to said servers is provided by an instance of a load balancer
(see details in Networking Considerations section).

Proposed architecture allows to quickly replace failing instances of
MySQL server without need to run full replication. It is still necessary
to restore the pool of hot standby instances whenever the failover event
occurs.

Networking Considerations

Load balancer is a key element of networking configuration of the Galera
cluster. Load balancer must be coordinated with the cluster, in terms
that it redirect write requests to appropriate instance of MySQL server.
It also ensures failover to hot standby instances and fencing of failed
active nodes.

Services Placement

MySQL servers forming the Galera cluster must run on dedicated physical
servers due to their intensive use of node’s resources.

Ceph Distributed Storage

Summary

Ceph is a distributed storage system with built-in replication
capability. Architecture of Ceph is designed for resiliency and
durability.

Ceph provides few different APIs for different types of supported
storage:

	Distributed file system

	Object storage

	Virtual block device

OpenStack platform generally uses Object API and Block Device API of
Ceph for Image and Virtual Block storage correspondingly.

Main components of Ceph are as follows.

	A Ceph Monitor maintains a master copy of the cluster map. A cluster
of Ceph monitors ensures high availability should a monitor
daemon fail. Storage cluster clients retrieve a copy of the
cluster map from the Ceph Monitor.

	A Ceph OSD Daemon checks its own state and the state of other OSDs
and reports back to monitors.

	RADOS gateway exposes the Object API of the platform. This API is
generally compatible with OpenStack Object Storage API, which
allows to use it as a Glance back-end without additional
modifications.

Ceph Monitor

For reliability purposes, Ceph Monitors should be placed to different
physical nodes. Those nodes might be the Storage nodes themselves,
albeit that is not generally recommended. Proper resilience of the
cluster can be ensured by using 3 or 5 instances of Ceph Monitor, each
running on separate host.

Ceph OSD

Every storage device requires an instance of Ceph OSD daemon to run on
the node. These daemons might be resource intensive under certain
conditions. Since one node usually have multiple devices attached to it,
there are usually more than one OSD process running on the node. Thus,
it is recommended that no other services are placed to the OSD nodes.

RADOS Gateway

This service exposes an Object API via HTTP. It have low resource
footprint and can be co-located with other services, for example, with a
Ceph Monitor. Multiple radosgw daemons should be used to provide
redundancy of the service. Load balancer should be placed in front of
instances of radosgw for load distribution and failover.

Services Placement

Ceph scales very well by adding new OSD nodes when capacity increase is
required. So the size of the Ceph cluster may vary for different clouds
of the same scale. In this document, a cluster with 45 OSD nodes is
described.

Instances of Monitor service require 1 dedicated node per instance, to
the total of 3 nodes. RADOS gateway servers run on the same nodes as
Monitors.

Control Plane Operations Monitoring

Summary

Monitoring the OpenStack Control Plane infrastructure is essential for
operating the platform. The main goal of it is to ensure that an
operator is alerted about failures and degradations in service level of
the environment. Metering plays less important role in this type of
monitoring.

Currently proposed solution for infrastructure monitoring is produced by
Stacklight project.

Stacklight is a distributed framework for collecting, processing and
analyzing metrics and logs from OpenStack components. It includes the
following services:

	Stacklight Collector + Aggregator

	Elasticsearch + Kibana

	InfluxDB + Grafana

	Nagios

Stacklight Collector

Smart agent that runs on every node in the OpenStack environment. It
collects logs, processes metrics and notifications, generates and sends
alerts when needed. Specialized instance of Collector called Aggregator
aggregates metrics on the cluster level and performs special correlation
functions.

Elasticsearch + Kibana

These components are responsible for analyzing large amounts of textual
data, particularly logs records and files coming from OpenStack platform
nodes. Kibana provides graphical interface that allows to configure and
view correlations in messages from multiple sources.

A typical setup at least requires a quad-core server with 8 GB of RAM
and fast disks (ideally, SSDs). The actual disk space you need to run
the subsystem on depends on several factors including the size of your
OpenStack environment, the retention period, the logging level, and
workload. The more of the above, the more disk space you need to run the
Elaticsearch-Kibana solution. It is highly recommended to use dedicated
disk(s) for your data storage.

InfluxDB + Grafana

InfluxDB is a time series database that provides high throughput and
real-time queries for reduced support of standard SQL capabilities like
efficiently updating records. Grafana exposes graphic interface to time
series data, displays graphs of certain metrics in time and so on.

The hardware configuration (RAM, CPU, disk(s)) required by this
subsystem depends on the size of your cloud environment and other
factors like the retention policy. An average setup would require a
quad-core server with 8 GB of RAM and access to a 500-1000 IOPS disk.
For sizeable production deployments it is strongly recommended to use a
disk capable of 1000+ IOPS like an SSD. See the *InfluxDB Hardware
Sizing
Guide* [https://docs.influxdata.com/influxdb/v0.10/guides/hardware_sizing/]
for additional sizing information.

Nagios

In Stacklight architecture, Nagios does not perform actual checks on the
hosts. Instead it provides transport and user interface for the alerting
subsystem. It receives alerts from Collectors and generates
notifications to the end users or cloud operators.

A typical setup would at least require a quad-core server with 8 GB of
RAM and fast disks (ideally, SSDs).

Services Placement

InfluxDB and Elasticsearch subsystems of the Stacklight solution should
run on dedicated servers. Additionally, clustered InfluxDB needs at
least three nodes to form a quorum. Elasticsearch scales horizontally by
adding instances, each running on a separate node. At least three
instances of Elasticsearch are recommended.

Stacklight Aggregator service could share a physical node with other
low-profile services.

Nagios server can be co-located with Stacklight Aggregator due to its
low resource footprint.

The total of 5 additional physical nodes are required to install Control
Plane Operations Monitoring framework based on Stacklight.

Services Placement Summary

The following table summarizes the placement requirements of the
services described above.

	Service
	Number Of Instances
	Number Of Dedicated Nodes
	Can Share A Node
	Requires a Load Balancer

	keystone-all
	5
	5
	no
	yes

	nova-api
	3
	3
	no
	yes

	nova-scheduler
	8
	–
	yes
	no

	nova-conductor
	3
	3
	no
	no

	nova-compute*
	–
	–
	yes
	no

	neutron-server
	3
	–
	yes
	no

	neutron-dhcp-agent
	3
	–
	yes
	no

	neutron-l2-agent*
	–
	–
	yes
	no

	neutron-l3-agent
	3
	–
	yes
	no

	neutron-metadata-agent
	3
	–
	yes
	no

	glance-api
	3
	–
	yes
	yes

	glance-registry
	3
	–
	yes
	no

	cinder-api
	3
	–
	yes
	yes

	cinder-scheduler
	3
	–
	yes
	no

	cinder-volume
	–
	–
	yes
	no

	horizon/apache2
	3
	3
	no
	yes

	rabbitmq-server
	3
	3
	no
	no

	mysqld-server
	3
	3
	no
	yes**

	ceph-mon
	3
	3
	no
	no

	ceph-osd***
	–
	–
	no
	no

	radosgw
	3
	–
	yes
	yes

	lma-aggregator
	1
	1
	yes
	no

	Influxdb + Grafana
	3
	3
	no
	no

	Elasticsearch + Kibana
	3
	3
	no
	no

	Nagios
	1
	–
	yes
	no

	TOTAL
	–
	30
	–
	–

* this service runs on a Compute/hypervisor host

** this service might require specialized load balancer (proxysql)

*** this service runs on a Storage/OSD node

Total number of nodes for control plane is 30 which is not so high
footprint at scale of 1000 nodes. However, it could be reduced further
by using cgroups and/or container orchestrator-specific mechanisms to
guarantee availability of certain amount of resources to certain
resource-intensive services running on the same node. This will allow to
co-locate resource-intensive services with lower risk of interference
and reduce the footprint of the Platform’s control plane.

Data Plane

Compute Virtualization

QEMU implementation of Linux KVM is used as a virtualization hypervisor.
The KVM runs under control of libvirtd daemon, configured and managed by
Nova Compute microservice (nova-compute).

Network

Depending on the picked Neutron plugin, data plane network might be
realized by different technology stacks. Reference architecture employs
OVS+VXLAN plugin, network data plane at compute hosts runs on
OpenVSwitch virtual switching software.

Storage

Local disks and Ceph cluster RBD volumes are both used to provide block
storage capability to different services in the platform.

Ephemeral

Disk files of the VM instances running in the cloud are stored in Ceph
distributed storage via RBD. This enables live migration of VMs and high
availability of data in certain cases.

Virtual Block Devices

Virtual block storage devices are provided by Ceph via RBD.

Images

Images used by Nova to spin up new VM instances are stored in Ceph via
Glance service’s back end driver.

Snapshot

Snapshots are stored in Ceph.

Database

Database files are kept on the local storage devices of nodes that run
database servers. The replication and availability of the data are
ensured by WSREP mechanism of Galera cluster.

Monitoring

The monitoring metrics and time-series data are written to InfluxDB
database. The database keeps its files on a local storage, similar to
the approach taken for state database (see above).

Logs

Logs are written to local disks of nodes, plus optionally to remote logs
collector service which is the part of Telemetry component of the
platform.

References

This section contains references to external documents used in
preparation of this document.

	Testing on scale of 1000 compute nodes [http://docs.openstack.org/developer/performance-docs/test_results/1000_nodes/index.html]

	Performance testing of OpenStack [http://docs.openstack.org/developer/performance-docs/]

	RabbitMQ Clustering [https://www.rabbitmq.com/clustering.html]

	RabbitMQ High Availability [https://www.rabbitmq.com/ha.html]

	ZeroMQ Status Update [http://lists.openstack.org/pipermail/openstack-dev/2016-March/090451.html]

 Kubernetes Master Tier For 1000 Nodes Scale

Kubernetes Master Tier For 1000 Nodes Scale

Table of Contents

	Kubernetes Master Tier For 1000 Nodes Scale
	Introduction
	Scope of the document

	Solution Prerequisites
	Hardware

	Provisioning
	Operating System

	Networking

	Partitioning

	Additional Ansible packages (optional)

	Node Decommissioning

	CI/CD
	User experience

	Updates

	Solution Overview
	Common Components

	Master Components

	Minion Components

	Optional Components

	Component Versions

	Components Overview
	Kubernetes
	kube-apiserver

	kube-scheduler

	kube-controller-manager

	kube-proxy

	kubedns

	Etcd Cluster
	Etcd full daemon

	Etcd native proxy

	Calico
	calico-node

	High Availability Architecture
	Proxy server

	SSL termination

	Proxy Resiliency Alternatives

	Resilient Kubernetes Configuration

	Logging

	Installation
	Common practices

	Installation workflow

	Scaling to 1000 Nodes
	Proxy Server

	kube-apiserver

	kube-scheduler

	kubedns and dnsmaq

	Ansible

	Calico

	Lifecycle Management
	Validation

	Scale up
	Master

	Minion

	Scale down
	Master

	Minion

	Test Plan

	Updating
	Non-intrusive
	Master

	Minion

	Intrusive
	Common

	Master

	Minion

	Limitations
	Hyperkube

	Update Configuration

	Abort Rollout

	Rollback

	Troubleshooting

	Open questions

	Related links

	Contributors

	Appendix A. High Availability Alternatives
	Option #1 VIP for external and internal with native etcd proxy

	Option #2 VIP for external and Proxy on each node for internal

	Option #3 VIP for external Kubernetes API on each node

	Option #4 VIP for external and internal

	Option #5 VIP for external native Kubernetes proxy for internal

Introduction

This document describes architecture, configuration and installation
workflow of Kubernetes cluster for OpenStack Containerised Control Plane
(CCP) on a set of hosts, either baremetal or virtual. Proposed architecture
should scale up to 1000 nodes.

Scope of the document

This document does not cover preparation of host nodes and installation
of a CI/CD system. This document covers only Kubernetes and related
services on a preinstalled operating system with configured partitioning
and networking.

Monitoring related tooling will be installed on ready to use Kubernetes
as Pods, after Kubernetes installer finishes installation. This document
does not cover architecture and implementation details of monitoring and
profiling tools.

Lifecycle Management section describes only Kubernetes and related
services. It does not cover applications that run in Kubernetes cluster.

Solution Prerequisites

Hardware

The proposed design was verified on a hardware lab that included 181
physical hosts of the following configuration:

	Server model: HP ProLiant DL380 Gen9

	CPU: 2 x Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz

	RAM: 264G

	Storage: 3.0T on RAID on HP Smart Array P840 Controller

	HDD: 12 x HP EH0600JDYTL

	Network: 2 x Intel Corporation Ethernet 10G 2P X710

3 out of the 181 hosts were used to install Kubernetes Master control
plane services. On every other host, 5 virtual machines were started
to ensure contention of resources and serve as Minion nodes in Kubernetes
cluster.

Minimal requirements for the control plane services at scale of
1000 nodes are relatively modest. Tests demonstrate that three physical
nodes in the configuration specified above are sufficient to run
all control plane services for cluster of this size, even though
an application running on top of the cluster is rather complex
(i.e. OpenStack control plane + compute cluster).

Provisioning

Hosts for Kubernetes cluster must be prepared by a provsioning system of
some sort. It is assumed that users might have their own provisioning
system to handle prerequisites for this.

Provisioning system provides installed and configured operating system,
networking, partitioning. It should operate on its own subset of cluster
metadata. Some elements of that metadata will be used by installer tools
for Kubernetes Master and OpenStack Control tiers.

The following prerequisites are required from Provisioning system.

Operating System

	Ubuntu 16.04 is default choice of operating system.

	It has to be installed and configured by provisioning system.

Networking

Before the deployment starts networking has to be configured and
verified by underlay tooling:

	Bonding.

	Bridges (possibly).

	Multi-tiered networking.

	IP addresses assignment.

	SSH access from CI/CD nodes to cluster nodes (is required for
Kubernetes installer).

Such things as DPDK and Contrail can be most likely configured in
containers boot in privileged mode, no underlay involvement is required:

	Load DKMS modules

	Change runtime kernel parameters

Partitioning

Nodes should be efficiently pre-partitioned (e.g. separation of /,
/var/log, /var/lib directories).

Additionally it’s required to have LVM Volume Groups, which further will
be used by:

	LVM backend for ephemeral storage for Nova.

	LVM backend for Kubernetes, it
may be required to create several Volume Groups for Kubernetes,
e.g. some of the services require SSD (InfluxDB), other will work
fine on HDD.

Some customers also require Multipath disks to be configured.

Additional Ansible packages (optional)

Currently Kubespray [https://github.com/kubespray/] project is
employed for installing Kubernetes. It provides Calico and
Ubuntu/Debian support.

Kubespray Ansible playbooks (or Kargo) are accepted into Kubernenes
incubator [https://github.com/kubernetes-incubator/kargo] by the community.

Ansible requires:

	python2.7

	python-netaddr

Ansible 2.1.0 or greater is required for Kargo deployment.

Ansible installs and manages Kubernetes related services (see
Components section) which should be delivered and
installed as containers. Kubernetes has to be installed in HA mode, so
that failure of a single master node does not cause control plane
down-time.

The long term strategy should be to reduce amount of Ansible playbooks
we have to support and to do initial deployment and Lifecycle Management
with Kubernetes itself and related tools.

Node Decommissioning

Many Lifecycle Management scenarios require nodes decommissioning
procedure. Strategy on decommissioning may depend on the customer and
tightly coupled with Underlay tooling.

In order to properly remove the node from the cluster, a sequence of
actions has to be performed by overlay tooling, to gracefully remove
services from cluster and migrate workload (depends on the role).

Possible scenarios of node decommissioning for underlay tooling:

	Shut the node down.

	Move node to bootstrap stage.

	As a common practise we should not erase disks of the node, customers
occasionally delete their production nodes, there should be a way
to recover them (if they were not recycled).

CI/CD

Runs a chain of jobs in predefined order, like deployment and
verification. CI/CD has to provide a way to trigger a chain of jobs (git
push trigger -> deploy -> verify), also there should be a way to share
data between different jobs for example if IP allocation happens on job
execution allocated IP addresses should be available for overlay
installer job to consume.

Non comprehensive list of functionality:

	Jobs definitions.

	Declarative definition of jobs pipelines.

	Data sharing between jobs.

	Artifacts (images, configurations, packages etc).

User experience

	User should be able to define a mapping of node and high level roles
(master, minion) also there should be a way to define mapping
more granularly (e.g. etcd master on separate nodes).

	After the change in pushed CI/CD job for rollout is triggered,
Ansible starts Kubernetes deployment from CI/CD via SSH (the
access from CI/CD to Kubernetes cluster using SSH has to be
provided).

Updates

When new package is published (for example libssl) it should trigger a
chain of jobs:

	Build new container image (Etcd, Calico, Hyperkube, Docker etc)

	Rebuild all images which depend on base

	Run image specific tests

	Deploy current production version on staging

	Run verification

	Deploy update on staging

	Run verification

	Send for promotion to production

Solution Overview

Current implementation considers two high-level groups of services -
Master and Minion. Master nodes should run control-plane related
services. Minion nodes should run user’s workload. In the future,
additional Network node might be added.

There are few additional requirements which should be addressed:

	Components placement should be flexible enough to install most of the
services on different nodes, for example it may be required to
install etcd cluster members to dedicated nodes.

	It should be possible to have a single-node installation, when all
required services to run Kubernetes cluster can be placed on a
single node. Using scale up mechanism it should be possible to
make the cluster HA. It would reduce amount of resources required
for development and testing of simple integration scenarios.

Common Components

	Calico is an SDN controller that provides pure L3 networking to
Kubernetes cluster. It includes the following most important
components that run on every node in the cluster.
	Felix is an agent component of Calico, responsible for configuring
and managing routing tables, network interfaces and filters on
pariticipating hosts.

	Bird is a lightweight BGP daemon that allows for exchange of
addressing information between nodes of Calico network.

	Kubernetes
	kube-dns provides discovery capabilities for Kubernetes Services.

	kubelet is an agent service of Kubernetes. It is responsible for
creating and managing Docker containers at the nodes of
Kubernetes cluster.

Plugins for Kubernetes should be delivered within Kubernetes containers.
The following plugins are required:

	CNI plugin for integration with Calico SDN.

	Volume plugins (e.g. Ceph, Cinder) for persistent storage.

Another option which may be considered in the future, is to deliver
plugins in separate containers, but it would complicate rollout of
containers, since requires to rollout containers in specific order to
mount plugins directory.

Master Components

Master Components of Kubernetes control plane run on Master nodes.
The proposed architecture includes 3 Master nodes with similar set
of components running on every node.

In addition to Common, the following components run on Master nodes:

	etcd

	Kubernetes
	Kubedns

	Kube-proxy (iptables mode)

	Kube-apiserver

	Kube-scheduler

	Kube-controller-manager

Each component runs on container. Some of them are running in static
pods in Kubernetes. Others are running as docker containers under
management of operating system (i.e. as systemd service). See
details in Installation section below.

Minion Components

Everything from Common plus:

	etcd-proxy is a mode of operation of etcd which doesn’t provide
storage, but rather redirects requests to alive nodes in etcd
clutser.

Optional Components

	Contrail SDN is an alternative to Calico in cases when L2 features
required.

	Flannel is another alternative implementation of CNI plugin for
Kubernetes. As Calico, it creates an L3 overlay network.

	Tools for debugging (see Troubleshooting below).

Component Versions

	Component
	Version

	Kubernetes
	1.4

	Etcd
	3.0.12

	Calico
	0.21-dev

	Docker
	1.12.3

Components Overview

Kubernetes

kube-apiserver

This server exposes Kubernetes API to internal and external clients.

The proposed architecture includes 3 API server pods running on 3 different
nodes for redundancy and load distribution purposes. API servers run as
static pods, defined by a kubelet manifest
(/etc/kubernetes/manifests/kube-apiserver.manifest). This manifest is
created and managed by the Kubernetes installer.

kube-scheduler

Scheduler service of Kubernetes cluster monitors API server for
unallocated pods and automatically assigns every such pod to a node
based on filters or ‘predicates’ and weights or ‘priority functions’.

Scheduler runs as a single-container pod. Similarly to API server,
it is a static pod, defined and managed by Kubernetes installer.
Its manifest lives in /etc/kubernetes/manifests/kube-scheduler.manifest.

The proposed architecture suggests that 3 instances of scheduler
run on 3 Master nodes. These instances are joined in a cluster whith
elected leader that is active, and two warm stan-dy spares. When
leader is lost for some reason, a re-election occurs and one of the
spares becomes active leader.

The following parameters control election of leader and are set
for scheduler:

	Leader election parameter for scheduler must be “true”.

	Leader elect lease duration

	Leader elect renew deadline

	Leader elect retry period

kube-controller-manager

Controller manager executes a main loops of all entities (controllers)
supported by Kubernetes API. It is similar to scheduler and API server
in terms of configuration: it is a static pod defined and managed by
Kubernetes installer via manifest file
/etc/kubernetes/manifests/kube-controller-manager.manifest.

In the proposed architecture, 3 instances of controller manager run
in the same clustered mode as schedulers, with 1 active leader and
2 stand-by spares.

The same set of parameters controls election of leader for controller
manager as well:

	Leader election parameter for controller manager must be “true”

	Leader elect lease duration

	Leader elect renew deadline

	Leader elect retry period

kube-proxy

Kubernetes proxy
forwards traffic [http://kubernetes.io/docs/admin/kube-proxy/]
to alive Kubernetes Pods. This is an internal component that exposes
Services created via Kubernetes API inside the cluster. Some
Ingress/Proxy server is required to expose services to outside of the
cluster via globally routed virtual IP (see above).

The pod kube-proxy runs on every node in the cluster. It is a static
pod defined by manifest file
/etc/kubernetes/manifests/kube-proxy.manifest. It includes single
container that runs hyperkube application in proxy mode.

kubedns

Kubernetes DNS schedules a DNS Pod and Service on the cluster, and configures
the kubelets to tell individual containers to use the DNS Service’s IP to
resolve DNS names.

The DNS pod (kubedns) includes 3 containers:

	kubedns is a resolver that communicates to API server and controls
DNS names resolving

	dnsmasq is a relay and cache provider

	healthz is a health check service

In the proposed architecture, kubedns pod is controller by
ReplicationController with replica factor 1, which means that only
one instance of the pod is working in a cluster at any time.

Etcd Cluster

Etcd is a distributed, consistent key-value store for shared
configuration and service discovery, with a focus on being:

	Simple: well-defined, user-facing API (gRPC)

	Secure: automatic TLS with optional client cert authentication

	Fast: benchmarked 10,000 writes/sec

	Reliable: properly distributed using Raft

etcd is written in Go and uses the Raft consensus algorithm to
manage a highly-available replicated log.

Every instance of etcd can operate in one of the two modes:

	full mode

	proxy mode

In full mode, the instance participates in Raft consensus and
has persistent storage.

In proxy mode, etcd acts as a reverse proxy and forwards client
requests to an active etcd cluster. The etcd proxy does not
participate in the consensus replication of the etcd cluster,
thus it neither increases the resilience nor decreases the write
performance of the etcd cluster.

In proposed architecture, etcd runs as a static container
under control of host operating system. See details below in
Installation section. The assumed version of etcd in this
proposal is etcdv2.

Etcd full daemon

There are three instances of etcd running in full mode on Master
nodes in the proposed solution. This ensures the quorum in the cluster
and resiliency of service.

Etcd native proxy

Etcd in proxy mode runs on every node in Kubernetes cluster, including
Masters and Minions. It automatically forwards requests to active Etcd
cluster members. According to the
documentation [https://coreos.com/os/docs/latest/cluster-architectures.html#production-cluster-with-central-services]
it’s recommended etcd cluster architecture.

Calico

Calico is an L3 overlay network provider for Kubernetes. It
propagates internal addresses of containers via BGP to all
minions and ensures connectivity between containers.

Calico uses etcd as a vessel for its configuraiton information.
Separate etcd cluster is recommended for Calico instead of sharing
one with Kubernetes.

calico-node

In the proposed architecture, Calico is integrated with Kubernetes
as Common Network Interface (CNI) plugin.

The Calico container called calico-node runs on every node in
Kubernetes cluster, including Masters and Minions. It is controlled
by operating system directly as systemd service.

The calico-node container incorporates 3 main services of Calico:

	
	Felix [http://docs.projectcalico.org/v1.6/reference/architecture/#felix],

	the primary Calico agent. It is responsible for programming routes and
ACLs, and anything else required on the host, in order to provide the
desired connectivity for the endpoints on that host.

	
	BIRD [http://docs.projectcalico.org/v1.6/reference/architecture/#bgp-client-bird]

	is a BGP client that distributes routing information.

	
	confd is a dynamic configuration manager for BIRD, triggered

	automatically by updates in the configuration data.

High Availability Architecture

Proxy server

Proxy server should forward traffic to alive backends, health checking
mechanism has to be in place to stop forwarding traffic to unhealthy
backends.

Nginx is used to implement Proxy service. It is deployed in a static pod,
one pod per cluster. It provides access to K8s API endpoint on a single
by redirecting requests to instances of kube-apiserver in a round-robin
fashion. It exposes the endpoint both to external clients and internal
clients (i.e. Kubernetes minions).

SSL termination

SSL termination can be optionally configured on Nginx server. From
there, traffic to instances of kube-apiserver will go over internal K8s
network.

Proxy Resiliency Alternatives

Since the Proxy Server is a single point of failure for
Kubernetes API and exposed Services, it must run in highly available
configuration. The following alternatives were considered for high
availability solution:

	Keepalived [http://www.keepalived.org/]
Although Keepalived has problems with split brain
detection [https://youtu.be/yq5nYPKxBCo?t=189] there is a
subproject in
Kubernetes [https://github.com/kubernetes/contrib/tree/master/keepalived-vip]
which uses Keepalived with an attempt to implement VIP management.

	OSPF [https://en.wikipedia.org/wiki/Open_Shortest_Path_First]
Using OSPF routing protocol for resilient access and failover between
Proxy Servers requires configuration of external routers consistently
with internal OSPF configurations.

	VIP managed by cluster management
tools [http://clusterlabs.org/pacemaker.html]
Etcd might serve as a cluster mangement tool for a Virtual IP address
where Proxy Server is listening. It will allow to converge the
technology stack of the whole solution.

	DNS-based reservation
Implementing DNS based High Availability is very
problematic [http://kubernetes.io/docs/user-guide/services/#why-not-use-round-robin-dns]
due to caching on client side. It also requires additional tools for
fencing and failover of faulty Proxy Servers.

Resilient Kubernetes Configuration

In the proposed architecture, there is a single static pod with Proxy
Server running under control of Kubelet on every Minion node.

Each of the 3 Master nodes runs its own instance of kube-apiserver
on localhost address. All services working on a Master node address
the Kubernetes API locally. All services on Minion nodes connect to
the API via local instance of Proxy Server.

Etcd daemons forming the cluster run on Master nodes. Every node in
the cluster also runs etcd-proxy. This includes both Masters and
Minions. Any service that requires access to etcd cluster talks
to local instance of etcd-proxy to reach it. External access to
etcd cluster is restricted.

Calico node container runs on every node in the cluster, including
Masters and Minions.

The following diagram summarizes the proposed architecture.

[image: image3]

Alternative approaches to the resiliency of Kubernetes cluster were
considered, researched and summarized in Appendix A. High Availability
Alternatives.

Next steps in development of this architecture include implementation of
a Proxy server as an Ingress Controller. It will allow for closer
integration with K8s in terms of pods mobility and life-cycle management
operations. For example, Ingress Controller can be written to only relay
incoming requests to updated nodes during rolling update. It also allows
to manage virtual endpoint using native Kubernetes tools (see below).

Logging

Logs collection was made by Heka broker running at all nodes in the
Kubernetes cluster. It used Docker
logging [https://docs.docker.com/engine/admin/logging/overview/]
in configuration when all logs are written to a volume. Heka reads files
from the volume using Docker
plugin [http://hekad.readthedocs.io/en/v0.10.0/config/inputs/docker_log.html]
and uploads them to ElasticSearch storage.

Installation

This section describes the installation of Kubernetes cluster on
pre-provisioned nodes.

The following list shows containers that belong to Kubernetes
Master Tier and run under control of systemd on Master and/or
Minion nodes, along with a short explaination why it is necessary
in every case:

	Etcd
	Should have directory mounted from host system.

	Calico
	Depending on network architecture it may be required to disable
node-to-node mesh and configure route reflectors instead. This
is especially recommended for large scale deployments (see below).

	Kubelet
	Certificates directory should be mounted from host system in Read
Only mode.

The following containers are defined as ReplicationController objects
in Kubernetes API:

	kubedns

All other containers are started as static
pods [http://kubernetes.io/docs/admin/static-pods/] by Kubelet in
‘kube-system’ namespace of Kubernetes cluster. This includes:

	kube-apiserver

	kube-scheduler

	kube-controller-manager

	Proxy Server (nginx)

	dnsmasq

Note

An option to start all other services in Kubelet is being considered.
There is a potential chicken-and-egg type issue that Kubelet requires
CNI [http://kubernetes.io/docs/admin/network-plugins/] plugin to
be configured prior its start, as a result when Calico pod started by
Kubelet, it tries to perform a hook for a plugin and
fails [https://gist.github.com/rustyrobot/d087c9177534edec82c3d79ad9576935].
Thi happens if a pod uses host networking as well.
After several attempts it starts the container, but currently
such cases are not handled
explicitly [https://github.com/kubernetes/kubernetes/blob/8cabbcbdcfa2bdf17c9ddc1db6754c862d6e08a2/pkg/kubelet/dockertools/docker_manager.go#L343-L350].

Common practices

	Manifests for static Pods should be mounted (read only) from host
system, it will simplify update and reconfiguration procedure.

	SSL certificates and any secrets should be mounted (read only) from
host system, also they should have appropriate permissions.

Installation workflow

	Ansible retrieves SSL certificates.

	Ansible installs and configures docker.
	Systemd config

	Use external registry

	All control-plane related Pods must be started in separate namespace
kube-system. This will allow to restrict access to control plane
pods in future [http://kubernetes.io/docs/user-guide/namespaces/].

	Ansible generates manifests for static pods and writes them to
/etc/kubernetes/manifests directory.

	Ansible generates configuration files, systemd units and services
for Etcd, Calico and Kubelet.

	Ansible starts all systemd-based services listed above.

	When Kubelet is started, it reads manifests and starts services
defined as static pods (see above).

	Run health-check.

	This operations are repeated for every node in the cluster.

Scaling to 1000 Nodes

Scaling Kubernetes cluster to magnitude of 1000 nodes requires certain
changes to confiugration and, in a few cases, the source code of
components.

The following modifications were made to default configuration
deployed by Kargo installer.

Proxy Server

Default configuration of parameter proxy_timteout in Nginx
caused issues with long-polling “watch” requests from kube-proxy
and kubelet to apiserver. Nginx by default terminates such sessions
in 3 seconds. Once session is cut, Kubernetes client has to restore
it, including repeat of SSL handshake, and at scale it generates
high load on Kube API servers, about 2000% of CPU in given
configuration.

This problem was solved by changing the default value (3s) to
more appropriate value of 10m:

proxy_timeout: 10m

As a result, CPU usage of kube-apiserver processes dropped
10 times, to 100-200%.

The corresponding change [https://github.com/kubernetes-incubator/kargo/issues/655]
was proposed into upstream Kargo.

kube-apiserver

The default rate limit of Kube API server proved to be too low for
the scale of 1000 nodes. Long before the top load on the API server,
it starts to return 429 Rate Limit Exceeded HTTP code.

Rate limits were adjusted by passing new value to kube-apiserver
with --max-requests-inflight command line option. While default
value for this parameter is 400, it has to be adjusted to 2000 at
the given scale to accommodate to actual rate of incoming requests.

kube-scheduler

Scheduling of so many pods with anti-affinity rules, as required by
CCP architecture, puts kube-scheduler under high load. A few
optimizations were made to its code to accommodate to the 1000
node scale.

	scheduling algorithm improved to reduce a number of expensive
operations: pull request [https://github.com/kubernetes/kubernetes/pull/37691].

	cache eviction/miss bug in scheduler has to be fixed to improve
handling of anti-affinity rules. It was worked
around [https://github.com/kubernetes/kubernetes/pull/37691] in
Kubernetes, but root cause still requires effort to fix.

The active scheduler was placed to dedicated hardware node in order
to cope with high load while scheduling large number of OpenStack
control plane pods.

kubedns and dnsmaq

Default settings of resource limits for dnsmasq in Kargo don’t fit for
scale of 1000 nodes. The following settings must be adjusted to accommodate
for that scale:

	dns_replicas: 6

	dns_cpu_limit: 100m

	dns_memory_limit: 512Mi

	dns_cpu_requests 70m

	dns_memory_requests: 70Mi

A number of instances of kubedns pod was increased to 6 to
handle load generated by the cluster of the given size.

Following limits were tuned in dnsmasq configuration:

	number of parallel connections the daemon could handle
was increased to 1000:

--dns-forward-max=1000

	size of cache was set to the highest possible value of 10000

Ansible

Several parameters in Ansible configuration have to be adjusted to
improve its robustness in higher scale environments. This includes
the following:

	forks for a number of parallel processes to spawn when communicating
to remote hosts.

	timeout default SSH timeout on connection attepmts.

	download_run_once and download_localhost boolean parameters
control how container images are being distributed to nodes.

Calico

In the tested architecture Calico was configured without route
reflectors for BIRD BGP daemons. Therefore, Calico established
a full mesh connections between all nodes in the cluster. This
operation took significant time during node startup.

It is recommended to configure route reflectors for BGP daemons
in all cases at scale of 1000 nodes. This will reduce the
number of BGP connections across the cluster and improve
startup time for nodes.

Lifecycle Management

Validation

Many LCM use-cases may cause destructive consequences for the cluster,
we should cover such use-cases with static validation, because it’s easy
to make a mistake when user edits the configuration files.

Examples of such use-cases:

	Check that there are nodes with Master related services.

	Check that quorum for etcd cluster is satisfied.

	Check that scale down or node decommissioning does not cause data
lose.

The validation checks should be implemented on CI/CD level, when new
patch is published, a set of gates should be started, where validation
logic is implemented, based on gates configuration they may or may not
block the patch for promotion to staging or production.

Scale up

User assigns a role to a new node in configuration file, after changes
are committed in the branch, CI/CD runs Ansible playbooks.

Master

	Deploy additional master node.

	Ensure that after new component is deployed, it’s available via
endpoints.

Minion

	Deploy additional minion node.

	Enable workload scheduling on new node.

Scale down

Scaledown can also be described as Node Deletion. During scaledown user
should remove the node from configuration file, and add the node for
decommissioning.

Master

	Run Ansible against the cluster to make sure that the node being
deleted is not present in any service’s configuration.

	Run node decommissioning.

Minion

	Disable scheduling to the minion being deleted.

	Move workloads away from the minion.

	Run decommission of services managed by Ansible (see section
Installation).

	Run node decommissioning.

Test Plan

	Initial deploy

Tests must verify that Kubernetes cluster has all required
services and generally functional in terms of standard
operations, e.g. add, remove a pod, service and other
entities.

	Scaleup

Verify that Master node and Minion node could be added to
the cluster. The cluster must remain functional in terms
defined above after the scaleup operation.

	Scaledown

Verify that the cluster retains its functionality after
removing Master or Minion node. This test set is subject
to additional limitations to number of removed nodes
since there is a absolute minimum or nodes required for
Kubernetes cluster to function.

	Update

Verify that updating single service or a set of thereof
doesn’t degrade functions of the cluster compared to
its initial deploy state.

	Intrusive

	Non-intrusive

	Rollback

Verify that restoring version of one or more components to
previously working state after they were updated does not
lead to degradation of functions of the cluster.

	Rollout abort

Verify that if a Rollback operation is aborted, the cluster
can be reverted to working state by resuming the operation.

Updating

Updating is one the most complex Lifecycle management use-cases, that is
the reason it was decided to allocate dedicated section for that. We
split updates use-cases into two groups. The first group
“Non-intrusive”, is the simplest one, update of services which do not
cause workload downtime. The second “Intrusive”, is more complicated
since may cause updates downtime and has to involve a sequence of
actions in order to move stateful workload to different node in the
cluster.

Update procedure starts with publishing of new version of image in
Docker repository. Then a service’s metadata should be updated to new
version by operator of the cloud in staging or production branch of
configuration repository for Kubernetes cluster.

Non-intrusive

Non-intrusive type of update does not cause workload downtime, hence it
does not require workload migration.

Master

Update of Master nodes with minimal downtime can be achieved if
Kubernetes installed in HA mode, minimum 3 nodes.

Key points in updating Master related services:

	First action which has to be run prior to update is backup of
Kubernetes related stateful services (in our case it is etcd).

	Update of services managed by Ansible is done by ensuring version of
running docker image and updating it in systemd and related
services.

	Update of services managed by Kubelet is done by ensuring of files
with Pod description which contain specific version.

	Nodes has to be updated one-by-one, without restarting services on
all nodes simultaneously.

Minion

Key points in updating Minion nodes, where workload is run:

	Prior to restarting Kubelet, Kubernetes has to be notified that
Kubelet is under maintenance and
its workload must not be rescheduled to different node.

	Update of Kubelet should be managed by Ansible.

	Update of services managed by Kubelet is done by ensuring of files
with Pod description.

Intrusive

Intrusive update is an update which may cause workload downtime,
separate update flow for such kind of updates has to be considered. In
order to provide update with minimal downtime for the tenant we want to
leverage VMs Live Migration capabilities. Migration requires to start
maintenance procedure in the right order by butches of specific sizes.

Common

	Services managed by Ansible, are updated using Ansible playbooks
which triggers pull of new version, and restart.

	If service is managed by Kubelet, Ansible only updates static
manifest and Kubelet automatically updates services it manages

Master

Since master node does not have user workload update the key points for
update are the same as for “Non-intrusive” use-cases.

Minion

User’s workload is run on Minion nodes, in order to apply intrusive
updates, rollout system has to move workload to a different node. On big
clusters updates in butch-update will be required, to achieve faster
rollout.

Key requirements for Kubernetes installer and orchestrator:

	Kubernetes installer is agnostic of which workloads run in Kubernetes
cluster and in VMs on top of OpenStack which works as Kubernetes
application.

	Kubernetes installer should receive rollout plan, where the order,
and grouping of nodes, update pf which can be rolled out in
parallel are defined. This update plan will be generated by
different tool, which knows “something” about types of workload
run on the cluster.

	In order to move workload to different node, installer has to trigger
workload evacuation from the node.
	Scheduling of new workload to the node should be disabled.

	Node has to be considered as in maintenance mode, that
unavailability of kubelet does not cause workload
rescheduling.

	Installer has to trigger workload evacuation in kubelet, kubelet
should use hooks defined in Pods, to start workload migration.

	In rollout plan it should be possible to specify, when to fail
rollout procedure.
	If some percent of nodes failed to update.

	There may be some critical for failure nodes, it’s important to
provide per node configuration, if it is important to stop
rollout procedure if this node failed to be updated.

Limitations

Hyperkube

Current Kubernetes deliver mechanism relies on Hyperkube distribution.
Hyperkube is a single binary file which contains all set of core
Kubernetes components, e.g. API, Scheduler, Controller, etc. The problem
with this approach is that bug-fix for API causes update of all core
Kubernetes containers, even if API is installed on few controllers, new
version has to be rolled out to all thousands of minions.

Possible solutions:

	For different roles rollout different versions of Hyperkube. This
approach significantly complicates versions and fixes tracking
process.

	Make split between those roles and create for them different images.
The problem will remain since most of the core components are
developed in a single repository and released together, hence it
is still an issue, if release tag is published on the repo,
rebuild of all core components will be required.

For now we go with native way of distribution until better solution is
found.

Update Configuration

Update of configurations in most of the cases should not cause downtime.

	Update of Kubernetes and related services (calico, etcd, etc).

	Rotation of SSL certificates (e.g. those which are used for Kubelet
authentication)

Abort Rollout

Despite the fact that this operation may be dangerous, user should be
able to interrupt update procedure.

Rollback

Some of the operations are impossible to rollback, rollback may require
to have different flow of actions to be executed on the cluster.

Troubleshooting

There should be a simple way to provide for a developer tooling for
debugging and troubleshooting. These tools should not be installed on
each machine by default, but there should be a simple way to get this
tools installed on demand.

	Image with all tools required for debugging

	Container should be run in privileged mode with host networking.

	User can rollout this container to required nodes using Ansible.

Example of tools which may be required:

	Sysdig

	Tcpdump

	Strace/Ltrace

	Clients for etcd, calico etc

	...

Open questions

	Networking node?

Related links

	Keepalived based VIP managament for Kuberentes [https://github.com/kubernetes/contrib/tree/master/keepalived-vip]

	HA endpoints for K8s in Kargo [https://github.com/kubernetes-incubator/kargo/blob/master/docs/ha-mode.md]

	Large deployments in Kargo [https://github.com/kubernetes-incubator/kargo/blob/master/docs/large-deployments.md]

	ECMP load balancing for external IPs [https://github.com/Mirantis/k8s-externalipcontroller/blob/master/doc/ecmp-load-balancing.md]

Contributors

	Evgeny Li

	Matthew Mosesohn

	Bogdan Dobrelya

	Jedrzej Nowak

	Vladimir Eremin

	Dmytriy Novakovskiy

	Michael Korolev

	Alexey Shtokolov

	Mike Scherbakov

	Vladimir Kuklin

	Sergii Golovatiuk

	Aleksander Didenko

	Ihor Dvoretskyi

	Oleg Gelbukh

Appendix A. High Availability Alternatives

This section contains some High Availability options that were
considered and researched, but deemed too complicated or too
risky to implement in the first iteration of the project.

Option #1 VIP for external and internal with native etcd proxy

First approach to Highly Available Kubernetes with Kargo assumes
using VIP for external and internal access to Kubernetes API, etcd proxy
for internal access to etcd cluster.

	VIP for external and internal access to Kubernetes API.

	VIP for external access to etcd.

	Native etcd proxy on each node for internal access to etcd cluster.

[image: image1]

Option #2 VIP for external and Proxy on each node for internal

The second considered option is each node that needs to access
Kubernetes API also has Proxy Server installed. Each Proxy forwards
traffic to alive Kubernetes API backends. External clients access
Etcd and Kubernetes API using VIP.

	Internal access to APIs is done via proxies which are installed
locally.

	External access is done via Virtual IP address.

[image: image2]

Option #3 VIP for external Kubernetes API on each node

Another similar to “VIP for external and Proxy on each node for
internal” option, may be to install Kubernetes API on each node which
requires access to it instead of installing Proxy which forwards the
traffic to Kubernetes API on master nodes.

	VIP on top of proxies for external access.

	Etcd proxy on each node for internal services.

	Kubernetes API on each node, where access to Kubernetes is required.

This option was selected despite potential limitations listed
above.

[image: image3]

Option #4 VIP for external and internal

In order to achieve High Availability of Kubernetes master proxy server
on every master node can be used, each proxy is configured to forward
traffic to all available backends in the cluster (e.g. etcd,
kubernetes-api), also there has to be a mechanism to achieve High
Availability between these proxies, it can be achieved by VIP managed by
cluster management system (see “High Availability between proxies”
section).

	Internal and External access to Etcd or Kubernetes cluster is done
via Virtual IP address.

	Kubernetes API also access to Etcd using VIP.

[image: image4]

Option #5 VIP for external native Kubernetes proxy for internal

We considered using native Kubernetes proxy for forwarding traffic
between APIs. Kubernetes proxy cannot work without Kubernetes API, hence
it should be installed on each node, where Kubernetes proxy is
installed. If Kubernetes API is installed on each node, there is no
reason to use Kubernetes proxy to forward traffic with it, internal
client can access the Kubernetes API through localhost.

 Index

Index

 Fuel CCP Design Documents

Fuel CCP Design Documents

This section is dedicated to design documents.

	Clusters On Kubernetes

	OpenStack Compute node / VMs on K8s

	OpenStack Reference Architecture For 1000 Nodes

 Global config

Global config

Optional config with global overrides for all services. Use it only if you need
to override some defaults.

File location

You can provide a path to file that you want to use as --config-file
argument to ccp tool, otherwise it will be taken from the first existing
location out of the following ones:

	~/.ccp.yaml

	~/.ccp/ccp.yaml

	/etc/ccp.yaml

	/etc/ccp/ccp.yaml

Note that you can use only one config file, if you want to split your file into
several, you should use includes.

Format

Every config file is a simple YAML file with any number of YAML documents
separated with --- line:

config_a: 1
config_b:
 config_c: 2

config_b:
 config_d: 3

All documents are deeply merged into one (only dicts are deeply merged, not
lists or other structures). So above config will be equivalent to:

config_a: 1
config_b:
 config_c: 2
 config_d: 3

Includes

If you want to split your config over several files (e.g. keep sentitive config
arguments separately or have a general config file part for several
deployments) you can use includes. An include is a separate YAML document with
!include tag and a list of files to be included in its place:

!include
- file_a
- file_b

If files are specified with relative paths, they are considered to be relative
to file with includes. Absolute paths are taken as is.

All documents from files in include list are substituted in place of an include
in order of appearance, so values from the latest file take precedence over
values in former ones.

Note that include is just another YAML document in config file, so you can
override values from include in following documents:

basic_value: 1

!include
- override_basic_value

override_value: from_include

Configuration file sections

Here you can find description of configuration parameters in these sections:

	Configuration key types
	Overview

	CCP specific

	Build options

	Deployment Configuration

	Other specific variables

	List of keys
	debug

	default_log_levels

	log_file

	verbose_level

	builder

	versions

	repositories

	sources

	url

	images

	configs

	secret_configs

	files

	kubernetes

	replicas

	services

	nodes

	roles

	registry

	action

	network_topology

	node_name

	pod_name

	address

 “services” section

“services” section

You would want to have dedicated DB/messaging/memcached/etc for some of your
services. Or you could have several backends and want to switch between them
easily. This guide will describe how to make proper configuration for both
cases.

All required configuration is located under services config group and can be
propagated via ccp.yaml.

The following abstractions are being used all over the CCP:

	database

	rpc

	notifications

You should explicitly define backends for them before deployment. For example:

services:
 database:
 service_def: galera
 rpc:
 service_def: rabbitmq
 notifications:
 service_def: rabbitmq

Those services can be used in topology definition. You don’t have to define
anything else. By default will be assumed that service has a name of service
definition.

In the following example will be created dedicated databases for keystone and
glance, dedicated memcached for keystone and horizon and those services will
be connected through mapping section.

services:
 database:
 service_def: galera
 keystone-db:
 service_def: galera
 glance-db:
 service_def: galera

 keystone-memcached:
 service_def: memcached
 horizon-memcached:
 service_def: memcached

 rpc:
 service_def: rabbitmq
 notifications:
 service_def: rabbitmq

 keystone:
 service_def: keystone
 mapping:
 database: keystone-db
 memcached: keystone-memcached
 glance-api:
 service_def: glance-api
 mapping:
 database: glance-db
 glance-registry:
 service_def: glance-registry
 mapping:
 database: glance-db
 horizon:
 service_def: horizon
 mapping:
 memcached: horizon-memcached

Note

Each galera instance should have it’s own subset of nodes.

 repositories section

repositories section

This section contains information about repositories with component definitions
that should be cloned by ccp fetch command or used by other
ccp commands.

Section-level parameters

	
clone

	Run ccp fetch analogue before running other commands. Default:
true

	
clone_concurrency

	Number of threads to use while cloning repos. Defaults to number of CPU cores
available.

	
repos

	List of repository definitions (see below) that
should be used by CCP tool. Defaults to a list of repos provided by CCP
upstream.

	
path

	Path to a dir where all repos are to be cloned or should be expected to be
present.

	
skip_empty

	Ignore empty repositories. Default: true

Repository definitions

Every item from this list describes one component repository that should be
downloaded or used by CCP tool.

	
name

	The name of the component, this is used as a name of directory in
path to clone or find component repo.

	
git_url

	The URL where repo should be cloned from

	
git_ref

	Git ref that should be checked out

_images/image11.png
External clients

Kubernetes cluster

Users _
E VIP]
Cl/cb _I_
FE S
_ - ~ ~
Master 1 r Master 2 T Master N
L I A
managment managment managment
I [vie vIP VIP
: Proxy Proxy Proxy
|
|
I etcd | k8s-API etcd | k8s-API etcd | k8s-API
L . L .
r a a r a
[etd Tigeap]| I L[eted figepm] I 1] eted Tigenp] |
| [Proxy || ey || Loy |
I | I |

Minion 1

|
Minion 2 Minion N

_images/image09.png
External clients

Users

clco

Kubernetes cluster
[l
|
_____ o |
Master 1 Master 2 Master N
T
I L
VIP managment VIP managment VIP managment
Re \ - \ Re \
eted eted eted
vIP proxy | PO proxy | PO proxy | PO
eted | k8s-API eted | k8s-API
L 4 L
O r a r a
eted k8s eted k8s

proxy | clients

proxy | clients

eted k8s
proxy | clients

Minion 1

Minion 2

Minion N

_images/image15.png
load balancer

7
L N

R
BN
= AN

RabbitMQ message bus

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to Fuel-ccp's documentation!

 		Quick Start

 		Recommended Environment

 		Deploy CCP

 		Install CCP CLI

 		Check deploy status

 		Deploying test OpenStack environment

 		Accessing horizon and nova-vnc

 		Cleanup deployment

 		Monitoring and Logging with StackLight

 		Overview

 		Deploy StackLight

 		Accessing the Grafana and Kibana interfaces

 		ElasticSearch cluster

 		Configuration files

 		Understanding global and default configs

 		Global defaults

 		Component defaults

 		Global config

 		Configuration key types

 		Overview

 		CCP specific

 		Build options

 		Deployment Configuration

 		Other specific variables

 		List of keys

 		debug

 		default_log_levels

 		log_file

 		verbose_level

 		builder

 		versions

 		repositories

 		sources

 		url

 		images

 		configs

 		secret_configs

 		files

 		kubernetes

 		replicas

 		services

 		nodes

 		roles

 		registry

 		action

 		network_topology

 		node_name

 		pod_name

 		address

 		Resource Bootstrapping

 		Network bootstrapping

 		Example

 		Image bootstrapping

 		Flavor bootstrapping

 		Ingress

 		Ingress controller

 		Enable Ingress in CCP

 		Expose a service with Ingress

 		Deploying Mutliple Parallel Environments

 		Introduction

 		Quick start

 		Sample deployment model

 		Sample CCP configuration

 		Mysql Galera Guide

 		Overview

 		CCP implementaion details

 		Entrypoint script

 		Galera pod

 		Etcd usage

 		Galera containers

 		galera

 		galera-checker

 		galera-haproxy

 		Supported scenarios

 		Initial bootstrap

 		Re-connecting to the existing cluster

 		Recovery

 		Advanced features

 		Cluster size

 		Force bootstrap

 		Troubleshooting

 		Check the logs

 		Check the etcd state

 		Node restart

 		Full cluster restart

 		Ceph and Swift guide

 		Ceph

 		Prerequirements

 		Deploy CCP with Ceph

 		Swift

 		Prerequirements

 		Deploy CCP with Swift

 		Troubleshooting

 		Ceph cluster deployment

 		Prerequirements

 		Installation

 		Configuration

 		Deploy

 		Check Ceph deployment

 		Configure pools and users

 		SR-IOV guide

 		Introduction

 		Prerequirements

 		Deploy CCP with SR-IOV

 		Neutron

 		Nova

 		Sample CCP configuration

 		Known limitations

 		Enable Distributed Virtual Routing in Neutron

 		Introduction

 		DVR

 		Sample CCP configuration

 		Using Calico instead of Open vSwitch

 		Introduction

 		Sample deployment

 		Sample deployment model

 		Configuring requirements in Kubernetes cluster

 		Sample CCP configuration

 		Creating networks and instances in OpenStack

 		Uninstalling and undoing customizations

 		Using OpenDaylight instead of Open vSwitch

 		Introduction

 		Sample deployment

 		Sample CCP configuration

 		Check configuration

 		Ironic guide

 		Underlay

 		Prerequirements

 		Neutron

 		Prerequirements

 		Swift

 		Prerequirements

 		Ironic

 		Prerequirements

 		Troubleshooting

 		ZeroMQ Guide

 		Services Known Issues

 		[Heat] WaitCondition and SoftwareDeployment resources

 		Problem description

 		Prerequisites for workarounds

 		Workaround out of the box

 		Workaround after deploy

 		Neutron Configuration

 		Tenant network types

 		Searchlight CCP plugin documentation

 		Overview

 		Dependencies

 		Configuration

 		Installation

 		Dashboard plugin

 		Designate CCP plugin documentation

 		Overview

 		Configuration

 		Installation

 		Dashboard plugin

 		How To Contribute

 		General info

 		Useful documentation

 		Application definition contribution guide

 		Overview

 		Structure

 		1. Docker image related data

 		2. Application definition files

 		3. Application related scripts and configs

 		4. Shared configurations templates

 		CCP Docker images guide

 		Docker files location

 		Docker directory structure

 		Dockerfile format

 		Supported Jinja2 variables

 		copy_sources

 		Testing

 		Application definition language

 		Application definition template

 		Parameters description

 		service

 		container

 		volume

 		command

 		files

 		file

 		DSL versioning

 		Debugging microservice/application

 		Problem description

 		How to debug

 		Another way to debug

 		Diagnostic snapshot

 		parameters

 		Clusters On Kubernetes

 		RabbitMQ Architecture with K8s

 		Clustering

 		Replication

 		Data Persistence

 		Networking Considerations

 		Kubernetes Integration

 		Alternatives

 		Galera Architecture with K8s

 		How Galera Cluster works

 		Starting the cluster

 		Node Provisioning

 		Networking Considerations

 		Storage Considerations

 		Replication Controller Schema with additional proxy and watcher

 		PetSet Schema

 		Galera Cluster Rebuild Problem

 		References

 		OpenStack Compute node / VMs on K8s

 		Potential solutions

 		1. Everything in one pod

 		2. Libvirt and VMs baremetal, OpenStack part in one pod

 		3. Libvirt and VMs baremetal, pod per OpenStack process

 		4. Libvirt and VMs in one pod, pod per OpenStack service

 		5. Libvirt in pod w/ host pid, pod per OpenStack service, VMs outside of containers

 		Conclusion

 		OpenStack Reference Architecture For 100, 300 and 500 Nodes

 		Introduction/Executive Summary

 		Highlights

 		Overview

 		Hardware and network considerations

 		OpenStack Control Plane

 		OpenStack Data Plane

 		Granular Life Cycle Management, Updates and Upgrades

 		Hardware Overview

 		Server Hardware Specifications

 		Resource Quantities

 		Network Schema

 		Underlay Network Topology

 		Network for OpenStack Platform

 		Control Plane

 		OpenStack Overview

 		Guidelines for OpenStack at Scale

 		Services Overview

 		OpenStack Identity (Keystone)

 		Apache2 Web Server

 		OpenStack Compute (Nova)

 		Nova API

 		Nova Scheduler

 		Nova Conductor

 		Nova Compute

 		Services Placement

 		OpenStack Networking (Neutron)

 		Neutron Server

 		Neutron DHCP agent

 		Neutron L3 agent

 		Neutron L2 agent

 		Neutron metadata agent

 		Services Placement

 		OpenStack Images (Glance)

 		Glance API

 		Glance Registry

 		Services Placement

 		OpenStack Block Storage (Cinder)

 		Cinder API

 		Cinder Scheduler

 		Cinder Volume

 		Services Placement

 		OpenStack Dashboard (Horizon)

 		RabbitMQ

 		Clustering

 		Replication

 		Data Persistence

 		Networking Considerations

 		Services Placement

 		Alternatives

 		MySQL/Galera

 		Clustering

 		Data Persistence

 		Replication

 		Networking Considerations

 		Services Placement

 		Ceph Distributed Storage

 		Summary

 		Ceph Monitor

 		Ceph OSD

 		RADOS Gateway

 		Services Placement

 		Control Plane Operations Monitoring

 		Summary

 		Stacklight Collector

 		Elasticsearch + Kibana

 		InfluxDB + Grafana

 		Nagios

 		Services Placement

 		Services Placement Summary

 		Data Plane

 		Compute Virtualization

 		Network

 		Storage

 		References

 		OpenStack Reference Architecture For 1000 Nodes

 		Introduction/Executive Summary

 		Highlights

 		Overview

 		Hardware and network considerations

 		OpenStack Control Plane

 		OpenStack Data Plane

 		Granular Life Cycle Management, Updates and Upgrades

 		Hardware Overview

 		Server Hardware Specifications

 		Resource Quantities

 		Network Schema

 		Underlay Network Topology

 		Network for OpenStack Platform

 		Control Plane

 		OpenStack Overview

 		Guidelines for OpenStack at Scale

 		Services Overview

 		OpenStack Identity (Keystone)

 		Apache2 Web Server

 		OpenStack Compute (Nova)

 		Nova API

 		Nova Scheduler

 		Nova Conductor

 		Nova Compute

 		Services Placement

 		OpenStack Networking (Neutron)

 		Neutron Server

 		Neutron DHCP agent

 		Neutron L3 agent

 		Neutron L2 agent

 		Neutron metadata agent

 		Services Placement

 		OpenStack Images (Glance)

 		Glance API

 		Glance Registry

 		Services Placement

 		OpenStack Block Storage (Cinder)

 		Cinder API

 		Cinder Scheduler

 		Cinder Volume

 		Services Placement

 		OpenStack Dashboard (Horizon)

 		RabbitMQ

 		Clustering

 		Replication

 		Data Persistence

 		Networking Considerations

 		Services Placement

 		Alternatives

 		MySQL/Galera

 		Clustering

 		Data Persistence

 		Replication

 		Networking Considerations

 		Services Placement

 		Ceph Distributed Storage

 		Summary

 		Ceph Monitor

 		Ceph OSD

 		RADOS Gateway

 		Services Placement

 		Control Plane Operations Monitoring

 		Summary

 		Stacklight Collector

 		Elasticsearch + Kibana

 		InfluxDB + Grafana

 		Nagios

 		Services Placement

 		Services Placement Summary

 		Data Plane

 		Compute Virtualization

 		Network

 		Storage

 		References

 		Kubernetes Master Tier For 1000 Nodes Scale

 		Introduction

 		Scope of the document

 		Solution Prerequisites

 		Hardware

 		Provisioning

 		CI/CD

 		Solution Overview

 		Common Components

 		Master Components

 		Minion Components

 		Optional Components

 		Component Versions

 		Components Overview

 		Kubernetes

 		Etcd Cluster

 		Calico

 		High Availability Architecture

 		Proxy server

 		SSL termination

 		Proxy Resiliency Alternatives

 		Resilient Kubernetes Configuration

 		Logging

 		Installation

 		Common practices

 		Installation workflow

 		Scaling to 1000 Nodes

 		Proxy Server

 		kube-apiserver

 		kube-scheduler

 		kubedns and dnsmaq

 		Ansible

 		Calico

 		Lifecycle Management

 		Validation

 		Scale up

 		Scale down

 		Test Plan

 		Updating

 		Non-intrusive

 		Intrusive

 		Limitations

 		Update Configuration

 		Abort Rollout

 		Rollback

 		Troubleshooting

 		Open questions

 		Related links

 		Contributors

 		Appendix A. High Availability Alternatives

 		Option #1 VIP for external and internal with native etcd proxy

 		Option #2 VIP for external and Proxy on each node for internal

 		Option #3 VIP for external Kubernetes API on each node

 		Option #4 VIP for external and internal

 		Option #5 VIP for external native Kubernetes proxy for internal

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/file.png

_images/image07.png

_images/image08.png
External clients

Kubernetes cluster

Users _
r VIP 1
clco XN
N
- ~—
Master 1 Master 2 Master N
L A
VIP managment VIP managment VIP managment
- - -
L y \ L
eted eted eted
proxy Proxy proxy Proxy proxy Proxy
— —
eted | k8s-API eted | k8s-API eted | k8s-API
— = L —d
——
- l T -
eted Pro eted Pro eted Pro
proxy Xy proxy Xy proxy Xy
Minion 1 Minion 2 Minion N

_images/image091.png
nova-scheduler nova-scheduler

RabbitMQ messaging bus

nova-conductor nova-conductor nova-conductor

node 1 node 3

Galera cluster

